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Turbulent spots in channel flow: an experimental study

Large-scale flow, inner structure and low order model

Grégoire Lemoult!, Konrad Gumowski?, Jean-Luc Aider!, and José Eduardo Wesfreid!

! Laboratoire de Physique et Mécanique des Milieux Hétérogenes (PMMH), UMR, CNRS 7636, ESPCI, UPMC, Paris Diderot,

10 rue Vauquelin, 75005 Paris, France

2 Warsaw University of Technology, Inst Aeronaut & Appl Mech, PL-00665 Warsaw, Poland

Received: date / Revised version: date

Abstract. We present new experimental results on the development of turbulent spots in channel flow. The
internal structure of a turbulent spot is measured, with Time Resolved Stereoscopic Particle Image Ve-
locimetry. We report the observation of travelling-wave-like structures at the trailing edge of the turbulent
spot. Special attention is paid to the large-scale flow surrounding the spot. We show that this large-scale
flow is an asymmetric quadrupole centred on the spot. We measure the time evolution of the turbulent
fluctuations and the mean flow distortions and compare these with the predictions of a nonlinear reduced
order model predicting the main features of subcritical transition to turbulence.
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1 Introduction

Transition to turbulence in wall bounded shear flows, like
plane Couette (PCF), circular Poiseuille (CPF), plane
Poiseuille (PPF) or boundary layer flow, is one of the most
intriguing examples of complex and disordered behaviour
in nature. The study of hydrodynamic instabilities and dy-
namical systems theory involve in this transition is an im-
portant field of research [I]. Turbulence appears abruptly,
not through a sequence of transitions, and is localized into
turbulent spots, surrounded by laminar flow. These spots,
first described by Emmons [2], are not composed of a sin-
gle large-scale homogeneous structure, but of an assem-
blage of small-scale vortices, separated from laminar flow
by fronts.

The dynamics of subcritical transition to turbulence
is strongly related to the existence and interplay of these
localized spots. Other isolated structures have been ob-
served in a great variety of physical systems [3], such
as thermal convection [4], magnetic liquids [5], granular
material [6] or buckling instabilities [7]. Indeed, localized
structures are related to subcritical instabilities, i.e. due
to finite amplitude perturbations.

We are interested in the case of transition to turbulence
of plane Poiseuille flow in a channel of rectangular cross
section. Channel flow can be described by a single dimen-
sionless parameter, the Reynolds number Re = Ugh/v,
where U, is the center line velocity, h the channel half
height and v the kinematic viscosity of the fluid. Lin-
ear stability theory predicts undisturbed stable laminar
Poiseuille flow until Re = 5772 [8], but experiments show

transition at Reynolds numbers near Re &~ 1300 [9LI01T],
in the form of isolated turbulent spots. Research on tur-
bulent spots in channel flow has been performed with flow
visualisation [9[12], local measurements [10,I3] and nu-
merical simulations in both PPF [I4}[15161718.19] and
PCF RO2122,23].

In the present study, we present new experiments which
provide quantitative measurements of the full velocity field
of a turbulent spot, as has been performed in pipe flow by
van Doorne and Westerweel [24] and recently by Lemoult
et al. [25] in channels. The fine structure of the velocity
field is measured by means of Time Resolved Stereoscopic
Particle Image Velocimetry (TR-SPIV). A Taylor’s hy-
pothesis is assumed to reconstruct the three dimensional
field from a time series.

Turbulent spots shows transient growth, after which
they either decay or are sustained, with a complex spatio-
temporal intermittent behaviour. Many questions remain
open about the growth (streamwise expansion), the spread-
ing (spanwise expansion), the splitting and the interaction
of these turbulent domains, surrounded by laminar ones.
The inhomogeneity of flow friction generates a coupling
between the flow at the intermediate scale inside the tur-
bulent domain and an external induced large-scale flow
which can influence the morphology of turbulent spots.
This topic has been studied theoretically and numerically,
especially in PCF [211[22], but not yet observed experi-
mentally until very recently in PPF [25]. The spot spread-
ing can be seen as a consequence of this large-scale flow
as pointed out by Duguet et al. 23] in PCF in relation
with the random nucleation of new streaks in the vicin-
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ity of the turbulent-laminar boundary [26]. It has been
observed in PPF that the leading and trailing edges of
spots expand at different velocities [912] but the mecha-
nism behind these observations remains unclear. Shimizu
and Kida [27], Duguet et al. 28] and Hof et al. [29] high-
lighted the local instability which occurs at the trailing
edge as a driving mechanism of the spot. In certain cases,
in PPF and PCF, turbulent spots show a complex spatio-
temporal behaviour, including collective organisation and
branching in the form of bands [30LBTL32].

In order to understand the existence of turbulent spots,
many theoretical efforts had been developed. The non-
normal linear stability theory explains that inner struc-
tures present maximum transient growth when they are
oriented in the direction of the flow as streamwise streaks
[33.34]. Linear stability theory also predicts the break-
down of these streaks [35]. However linear models fail to
predict the existence of a sustained state in which laminar
and turbulent areas coexist. A preferred framework for un-
derstanding this situation is provided by nonlinear mod-
els of self-sustained turbulence [36,27.37]. If sufficiently
strong streamwise streaks exist inside the turbulent spot,
a longitudinal wavy instability occurs. This streamwise
modulation of the streaks will regenerate initial stream-
wise rolls through a non linear mechanism. If this is the
case, nonlinear amplification occurs, in time and space,
inside the spot leading to a turbulent state.

According to dynamical systems theory the disordered
dynamics of turbulence as well as of its edge are organized
around unstable solutions of the Navier-Stokes equations.
Within the past two decades, the computation of exact
solutions of the Navier-Stokes equation has attracted con-
siderable attention. The discovery of these exact coherent
structures has opened a new approach to understanding
the dynamics of unsteady flows in transitional Re range.
Starting with the computation by Nagata [38] of the first
unstable three dimensional nonlinear equilibrium solution
of PCF, a large number of equilibria and travelling waves
of PCF and CPF have since been found. For a review of
the subject, the reader is invited to refer to Kawahara
et al. [39]. A few of these were found in PPF [40[411/42]
43]. Due to the unstable nature of these solutions, it is
non-trivial to observe them experimentally. Nevertheless
recently, de Lozar et al. [44] computed an exact solution
of the Navier Stokes equation in CPF using experimental
data as an initial guess for an iteration method.

Over the past years, many minimal or phenomeno-
logical models have been suggested to capture the main
features of the transition to turbulence in wall bounded
shear flows, such their subcritical character with finite
amplitude perturbations and the existence of localized
domains. Some of them are based on quintic amplitude
equations, such extensions of Landau-Ginzburg or Swift-
Hehenberg equations [45,[46[47]. Other nonlinear models,
as developed by Waleffe [36], are derived from a strong
modal reduction of the Navier-Stokes PDEs into ODEs.
These models introduce a separation between a weak span-
wise fluctuations (rolls), streamwise fluctuations (streaks),
streamwise waviness of streaks and base-flow distortion.
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Fig. 1. a. Schematic view of the water channel. The develop-
ment section is 1 m long and the test section is 1.2 m long.
We use two synchronized high speed cameras to measure the
velocity field in the plane = 85h in a (Ay, Az) = (2h, 15h)

area.

Spatial extensions of this model include diffusive terms
[4849] in order to generate spontanecous patterns. Re-
cently, Barkley [50] proposed a more compact model for
transitional CPF with only two variables: the turbulent
fluctuations and the base flow distortion. He modelled the
transitional pipe flow as a one-dimensional excitable and
bistable medium. His model captures the main feature of
transition in pipe flow as metastability of localized puffs,
puff splitting and slugs.

The purpose of this article is to provide a precise ex-
perimental description of the flow field in and around a
turbulent spot in PPF during its genesis and to discuss
the relevance of low order models in predicting the main
features of subcritical transition to turbulence in channel
flow.

2 Experimental set-up

The experimental system is composed of a 3-m-long plexi-
glass, constant-pressure-driven channel (figure[l)). The test
section’s half height is h = 10 mm, its length is 220h, and
its width is 2L, = 15h. The Reynolds number is defined
as Re = Ugy 1amh /v, where U jam is the center line veloc-
ity measured in absence of the spot. The z, y and z axes
are, respectively, the streamwise, wall normal and span-
wise coordinates, with y = 0 in the middle of the channel
and (x,z) = (0,0) where perturbations are injected. We
define the moving coordinate z* = x/h—t.(2/3)Uct 1am /
where (2/3)Up,1qm is the mean, or bulk, velocity along the
wall normal coordinate on the laminar case. The design of
the inlet section, together with the smooth connections
between all parts of the channel, minimize the upstream
perturbations and keep the flow laminar up to Re = 5500,
which corresponds to the maximum free-stream velocity
of this channel. The perturbation is generated 100h down-
stream from the inlet to ensure a fully developed Poiseuille
flow.
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Fig. 2. Sketch of the experimental apparatus used for Time
Resolved Stereoscopic PIV. Two high speed cameras are po-
sitioned on opposite lateral sides of the channel at 45° to the
observation plane.

The flow is perturbed by a round water jet normal
to the flow, with diameter d = 0.2h, drilled into the up-
per wall. In the following, we will study the response of
the flow to a single, short perturbation (At = 150 ms).
The structure of the flow induced by the jet may be com-
plex and depends strongly on the amplitude of the per-
turbation. Nevertheless, above a critical value and above
Re =~ 1300, this small perturbation will always trigger the
development of a turbulent spot [11].

A Time-Resolved Stereoscopic Particle Image Velocime-
try (TR-SPIV) system is used to measure the three com-
ponents of the velocity fields (U,V,W) in the = 85h
plane (ﬁgure. The fluid is seeded with neutrally buoyant
tracer particles (d, ~ 20pum) and a cross-sectional plane is
lit by a laser sheet. This plane is viewed by two high speed
cameras (Phantom v9) positioned on opposite lateral sides
of the channel. The angle between the observation plane
and the light sheet plane is set to 45°. We also use Scheim-
plfung adapters to ensure the focus of particles in the
entire channel cross section. In order to minimize aber-
rations due to the air/plexiglass dioptre, two water-boxes
are added. The passage of turbulent structures is recorded
in a series of 1500 contiguous measurements at sampling
frequencies between 100 and 200 Hz. The frame rate of the
cameras has been adapted for each Re to ensure 10 frames
per advective time unit (h/U). The full three-component
velocity field is reconstructed using the commercial soft-
ware Davis from LaVision. We start the PIV calculation
with interrogation windows of 64 x 64 px and decrease the
size until 16 x 16 px with an overlap of 50%. Two passes
are done for each sizes. This calculation give a final spa-
tial resolution of (N, x N,) = (41 x 301) points in the
cross sectional plane. To a first approximation, the spatial
structure can be recovered from the temporally resolved
measurement by multiplication with the mean advection

1 .'I' Ilﬂm-iili TereerbiibaRRty 4

/\

0 [')
-1 y/h zfL_ !

i
=
l:_,l

Fig. 3. Laminar velocity profile measured by stereoscopic PIV
for Re = 2000. Solid lines are the theoretical profile and points
are experimental data. In blue, profile measured in the z = 0
plane, Ujgm(z = 85h,z = 0), and in red, profile measured in
the y = 0 plane, Uigm(z = 85h,y = 0), non-dimensionalized
by Uiam(y = 0,2 = 0).

speed of the flow structures (Taylor’s frozen turbulence
hypothesis). Because of the fast downstream advection,
structures change little while they move over short dis-
tances (order of O(h)), justifying this hypothesis.

3 Results and discussion

The measured velocity field U = (U, V, W) is decomposed
as the sum of its laminar component U, and a pertur-
bation u.

(1)

The laminar part of the flow, Uy (y, 2), is obtained by
averaging the velocity field before the passage of the spot
over 100 measurements. Figure |3| shows the laminar part
of the velocity field, Ujgm(y = 0) and Ujem(z = 0), mea-
sured for Re = 2000 and adimensionalized by U jom =
Uiam(y = 0,z = 0). This measured laminar velocity pro-
file is compared to the theoretical one, plotted as solid
lines in figure [3] The Poiseuille parabolic velocity profile
is recovered along the y-axis. Along the z-axis the profile
deviates slightly from the theoretical one, especially close
to the walls. This means that lateral boundary layers are
not fully developed. This last point which could be seen
as negative, is in fact valuable since the parabolic profile
is valid in a larger area in the channel. Indeed, the profile
along the y-axis remains parabolic for —6h < z < 6h.

U=U;mn+u

3.1 Spot structure

Figure [] shows a typical reconstruction of the 3D velocity
field assuming Taylor’s hypothesis. The spot represented
in this figure has been recorded at Re = 1500. Figures[da,
[Mb and [d]d show the streamwise velocity u and figures [dc
and []e represents the streamwise vorticity £2,. The flow is
dominated by elongated streamwise streaks. Fast velocity
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Fig. 4. Reconstructed 3D velocity field, assuming Taylor’s hypothesis, of a spot at Re = 1500. a. and d. Streamwise fluctuation

u as a volumetric visualization (a color and a transparency is associated with each voxel) from v = —0.2Uc iam (blue) to
u = 0.2U¢,1am (red) and u = 0 is transparent. b. Slice of streamwise fluctuations in the plane y = —0.5h and slices in the
planes z* = —40,—50 and — 60. c. and e. Streamwise vorticity w, as a volumetric visualization from wy = —wmaa (blue) to

Wz = Wmaz (red) and wy = 0 is transparent. The dotted box represented in a.-b.-c. correspond to the region of space shown in

figure [6]

streaks are located close to the wall and are well localized,
i.e. their positions in the y — z plane do not vary much
in time. Low velocity streaks on the other side are more
mobile and are located in the central part of the channel.

From figures ¢ and [dle, we observed that streamwise
vorticity {2, is concentrated in the upstream half of the
spot. Streamwise vortices present in the flow are localised
in a x —y plane and are tilted relatively to the streamwise
coordinate z with an angle of around +5°, estimated from
the auto-correlation function. In the downstream part of
the spot (leading edge), vortices are concentrated in the
centre of the channel whereas close to the trailing edge
they form two layers of vortices close to each wall.

Although the inner structure of a turbulent spot is
highly stochastic, TR-PIV allows us to capture the in-
stantaneous 3D field of velocity inside a spot. This instan-
taneous picture allows us to extract some very transient
features of shear flow turbulence. Figures [§] and [6] high-
light some features which can be found inside a turbulent
spot. One key component of the self sustaining process in
transitional shear flows is based on the assumption that
there exists an instability of the streaks which regenerates
streamwise modes. Figure [5| represents three snapshots of
a part of the flow recorded in a Re = 1250 turbulent spot.

This sequence suggests the existence of a sinuous instabil-
ity which occurs inside the spot.

An important advance in the understanding of the
transition to turbulence in past years has been the dis-
covery of travelling wave solutions in shear flows. Figure [
shows a zoom inside the box, represented in figure [d] close
to the trailing edge of this spot. In this figure we represent
by blue and red iso-surfaces of streamwise vorticity (2, and
in gray the iso-surface of U = 0.5. From the bottom view,
we see clearly the tilt of streamwise vortices in the y — z
plane. The middle view give a clear insight into the al-
ternating pattern which streamwise vortices form around
the low-speed streak visualized by the bump in the U iso-
surface in gray. This travelling wave like structure is in a
really good agreement with travelling wave solution found
in PPF [A1l42|51143]. Travelling wave like structures are
also observed for other Re between 1250 and 2000. Above
Re = 2000, coherent structures subsist but are more dif-
ficult to distinguish. To our knowledge, this is the first
experimental observation of structures resembling nonlin-
ear travelling waves in PPF.
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Fig. 5. Sequence of snapshots at r* = —57.4,—55.8 and —
54.2 showing a sinuous instability observed in a spot recorded
at Re = 1250. Color is the streamwise velocity U from 0 (blue)
to 1 (red) and arrows represent the in-plane motion (V, W).
The solid line shows the U = 0.5 iso-line.
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Fig. 6. Travelling wave like structure recorded close to the
trailing edge of the spot represented in figure [i] (see box). In
blue and red, iso-surfaces of streamwise vorticity w, = —0.25
h/Ucliam (blue) and wy = 40.25 % h/Uciigm (red). In gray,
iso-surface of streamwise velocity U = 0.5Uci,1am.
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Fig. 7. Large-scale flow averaged over —h < y < h for Re =
1500 textured by LIC technique. a. Streamwise component of
the large scale flow, (urs)y/Uct,iam- b. Spanwise component of
the large scale flow, (wrs)y/Uctiam-

3.2 Large-scale flow

In Lemoult et al. [25], we carried out the decomposition of
the fluctuating part of the flow, u, into a large-scale flow,
urg, and a small-scale flow, 1.

u=ugs+1u (2)

In order to compute this large-scale flow, we measured the
flow in a wide area and applied spatial filtering. We only
measure this large scale flow in the y = 0.5h plane. In the
present study, we compute the 3D large scale flow field
by applying a spatial Gaussian filtering of standard devi-
ation 2h in the x and z direction. In order to increase the
signal-to-noise ratio, we averaged the velocity field over 10
realisations of the same experiment. We obtain the large-
scale flow represented in figures [7] and

Figure [7] shows the large-scale flow, urs and wrg, in
the z — z plane averaged over the entire channel height. A
Line Integral Convolution (LIC) technique [52] is used to
highlight the streamlines of the flow field. The y-averaged
large scale flow in the x—z plane is formed of a quadrupole
centred on the spot. The turbulent spot produces a par-
tial blockage of the channel and induces this large-scale
flow across its borders. This large-scale flow is reminis-
cent of that observed around defects and inhomogeneities
in Rayleigh-Bénard convection [53] and its strength could
be probably estimated from the gradient of the spatial
phase variable.

In the £ —y plane, the phenomenon is slightly different.
Figure [§] presents the large-scale flow, urs and vpg, in
the © — y plane z-averaged over the entire channel width.
The main difference is v is one order of magnitude smaller
than u and w. Again, the partial blockage induced by the
turbulent spot creates a large scale flow around it. And
the flow is accelerated, compare to the laminar flow, close
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Fig. 8. Large-scale flow averaged over —L, < z < L, for Re =
1500 textured by LIC technique. a. Streamwise component of
the large scale flow, (urs)z/Uect,iam- b. Wall normal component
of the large scale flow, (vrs)./Uciiam.
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to the wall. This large scale flow, in the z — y plane, forms
a dipole centred on the spot.

In order to better capture the nature of the large-scale
flow, we compute the wall normal vorticity associated to
the large scale flow 2, = Ourg/0z — Owrg/0x*. Figure
El presents {2, non-dimensionalized by Ue iam/b , in four
different « — z planes: y = 0,0.25h,0.5h and 0.75h, tex-
tured with LIC using the large-scale flow. From this repre-
sentation it is noticeable that the quadrupole observed in
figure [7]is in fact a 3D structure, mainly composed of the
superposition of three dipoles. One is located in y = 0 and
is positioned at the leading edge of the spot whereas the
other ones, located near y = £0.75h, are located at the
trailing edge of the spot. The present study of the large
scale flow associated with a turbulent spot confirmed the
presence of a quadrupole centred on the spot observed by
Lemoult et al. [25] and give a description of the variation
of this large scale flow along the wall normal coordinate.

3.3 Low order model

The TR-SPIV in a cross channel plane gives us the instan-
taneous 3D flow in and around a turbulent spot. We can
then study the dynamics of this turbulent spot in terms
of a low-order model. We follow the idea of Barkley [50]
who models pipe flow as a generic excitable and bistable
medium. His two-variable model captures qualitatively the
main features of pipe flow transition, including metasta-
bility of puffs at low Re, splitting of puffs at intermediate
Re and slugs at higher Re. The model only includes two
variables, (u,q) where u is the center line streamwise ve-
locity and g is related to the intensity of the turbulence.
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Fig. 9. Large scale wall normal vorticity {2, flow in the y =
0,0.25h,0.5h and 0.75h planes for Re = 1500 textured by LIC
technique using the large scale flow field.

3.3.1 Continuous model

We start with a set of two partial differential equations
(u,q)(x,t) where z is the streamwise coordinate of the
channel which is similar to the continuous model presented
by Barkley [50] (we will now refer to this model as B11)
except we made a substitution in the u variable.

(3)
0w+ udaq = [u— 1+ 7= (r+ (g — %] + a4

In B11, w is the centerline velocity relative to the mean
velocity, we prefer to use the centerline velocity instead.
Another change is the advection by the velocity u, in the
left hand side, instead of advection by a constant velocity
in B11.

The core of the model is seen in the u — g phase space
represented in figure We represent the nullclines, i.e.
curves where all spatial and temporal derivatives are equal
to zero. Whatever r, there exists a fixed point in (1,0),
which corresponds to the laminar parabolic profile. The
dynamics of u is quite simple. In the absence of turbu-
lence, g = 0, u relaxes to u = 1 at rate €1, while if ¢ > 0,
u decreases t0 Umean = 2/3 at a faster rate dominated
by €. There exists two different g-nullclines. The ¢ = 0
curve means that turbulence can not be generated spon-
taneously from laminar flow but a minimal perturbation

Ou + ulpu = €1(1 — u) — e2(u — Upyik)q — Ot
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Fig. 10. Top row: Phase space (u,q) for r = 0.9 r. (left) and
r = 1.2 r. (right). u-nullcline appears in blue and g-nullclines
appear in red, black line is the result of the model Bottom-row:
u(z) and g(z) for the same r than above.

is necessary. The second g-nullcline is the quadratic curve

defined as
u—1+47r
=14y —
q r+4

The position of its nose, (1 —r, 1), is controlled by the
parameter r, which plays the role of a Reynolds number,
while it always cut the ¢ = 0 curve at u = 144. The upper
branch is attractive, while the lower branch is repelling
and sets the nonlinear stability threshold for laminar flow.
If laminar flow is perturbed beyond the threshold (which
decreases with r like r~1), ¢ is nonlinearly amplified and
u decreases in response.

While r < r. = e2/[3(€1 + €2)], there is only one fixed
point and the system is excitable. The upstream side of
a puff is a trigger front where abrupt laminar to turbu-
lent transition takes place. However, turbulence cannot be
maintained locally following the drop in the mean shear.
The system relaminarizes on the downstream side whose
speed is set by the upstream front. In this regime, turbu-
lent puffs are advected downstream without any change
in their shape. On the other hand, for » > r., a second
fixed point appears. The system becomes bistable and tur-
bulence can be maintained indefinitely by the modified
mean shear. The upstream and downstream front move at
different speeds and the turbulent region expands. This
regime corresponds to the ”slug” regime (here slug should
be understood as a spreading spot in a 1D PPF).

We compare this model to our experimental data, U
and E, ., where Uy is the streamwise velocity in the centre
of the channel and F)., defined as the energy associated
with the fluctuating cross flow, is calculated as

1 Lz h
szg/ /(&+mez
—LzJ—h

(5)

Optimization of (€1, €2, geurp)
P ™

Optimization of r for Re = 1250

[Fre2, @uart] + -l
€11 €2s Fturb

{ E"‘--::n! 5 Ey: .l"l'qi urb

Optimization of r for Re = 1500
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Fig. 11. Optimization procedure to identify the five adjustable
parameters (blue) by minimization of the error with respect to
the experimental data (green).

We extract Uy and E,, from our experimental data
for three Re (1250,1500 and 1750). In the model, whereas
u is physical and can be compared directly to U, ¢ is of
the order of O(1). In the experimental data, F,. is much
smaller. We introduce g, to rescale F, . in order to ob-
tain ¢ = E,. /qrurs = O(1). In order to identify the param-
eters which are the most relevant in the channel flow case,
we set up an optimization procedure. In addition to gy.p,
there are 5 parameters of the model to find. Two of them,
€1 and €9, are fixed for all Re and we have to find rq, ro
and r3, the parameter r in each Re cases. We have chosen
to set § = 0.1 as proposed by Barkley [50]. This process
is represented on figure and can be explained as fol-
low. We start with an initial guess for (e1, €2, Grurp), then
we optimize the value of r for each value of Re. In order
to achieve this optimization, we use the fminbnd function
in Matlab. This algorithm is based on a golden section
search and parabolic interpolation and minimizes a func-
tion of one parameter on a given interval. The function we
minimize is the error between the value of (u, ¢) predicted
by the model and 10 realisations of the experiment. Fi-
nally, we use the fminsearch function of Matlab (which
uses the Nelder-Mead simplex algorithm as described in
Lagarias et al. [54]) to find the trio (e, €2, ¢rurp) which
minimizes the sum of the square of the individual errors.

The results of the optimization procedure are presented
on figure For each Re (top row: Re = 1250, middle
row: Re = 1500 and bottom row: Re = 1750), we repre-
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Fig. 12. Top row: Re = 1250, middle row: Re = 1500 and
bottom row: Re = 1750. Solid line is the result of the model and
dots correspond to experimental data. Left column: u(z) and
g(x) for each Re, blue lines represent u, red lines represent ¢
and dots are 10 experimental realisations. Right column: phase
space (u, q), u-nullcline appears in blue and g-nullcline appear
in red.

sent 10 experimental realisations (dots, each realisation is
a time series of 1500 samples) of Uy and Ey./qturs. The
solid lines are u and ¢ predicted by the model. We have
found that e = 0.1, e = 0.16 and quup = 8 x 107 give
the best fit. We also have identified r; = 0.84, ro = 0.87
and r3 = 1.01. As expected, r increases with Re, even
though the relation is not linear. The agreement between
the experimental data and the model is quite good and it
is important to note that it does not depend strongly on
the choice of parameters.

3.3.2 Additive noise

While the continuous model captures well the basic prop-
erties of the transition process, “equilibrium” spots (with
constant shape and size) and expanding spots, it is too
simplistic to model the abrupt decay of spots or the ap-
pearance of bands. We continue to follow the idea of Barkley
by adding some noise to the model [55]. We replace equa-
tion by the following

th—&—u@zq:q[u— 1+r—(r+40)(q— 1)2]
+0ueq + 041
where 7(z,t) is Gaussian noise. This is exactly the same

equation as except we add noise proportional to ¢ to
the right-hand side of the equation. We also add a new
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Fig. 13. Top-left: Probability for a puff to survive until a
given time, P (t), for r = 0.8,0.85,0.9,0.95,1,1.05 and 1.1.
Solid lines correspond to the fit of P () by an exponential.
Top-right: Probability for a puff to have been splitted at a
given time, Papic(t), for 7 = 1.25,1.3,1.35,1.4,1.45 and 1.5.
Solid lines correspond to the fit of Pspiis(t) by an exponential.
Bottom: Mean time life, 7is, and mean splitting time, 7epiit,
calculated from the exponential fit. Solid lines are fit by a super
exponential.

parameter ¢ which controls the strength of the noise. In
the following, we set o = 0.08.

By adding this noise we allow a spot to relaminarize
spontaneously or to split into two distinct spots. In order
to perform lifetime statistics, we perform 1000 simulations
with the same initial condition and for each simulation
we run the simulation as long as the spot survives, i.e.
lgll > 10=2. We can then define the probability P (t) for
the spot to survive until ¢. Figure[T3] top left, presents this
probability for different r. The survival probabilities are
exponential, Pif(t) o< exp(—t/nife(r)) where Tjifo(r) is the
mean spot lifetime. It is not possible to compare the mean
lifetime founded here since to our knowledge there exists
no experimental data in the literature for the lifetime of
spots in plane Poiseuille flow. Nevertheless this can be
compared to the results found in other wall bounded shear
flows [BOLE7LHI5I].

It is also possible to generate splitting time statistics,
Pt (t), for the model with noise. We perform 1000 sim-
ulations with the same initial condition and we run the
simulation until a splitting event occurs, i.e. two ¢ peaks
separate by at least 40h. We present in figure[T3] top right,
this splitting probability as a function of time for different
r. Similarly to the life time statistic, the spliting probabil-
ity follows an exponential law, Pypit(t) o exp(—t/Tspiit (1))
with 7gpiit(r) the mean time necessary for a spot to split
into two spots.
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Figure bottom, compares the mean lifetime, njge,
and the mean splitting time, 7y, with respect to the
parameter 7. As expected, Tjife increases with r and Tepit
decreases with r. The intersection point is expected to
be the onset of sustained turbulence in the sense that it
takes less time to split than to vanish. Moreover, solid lines
are fits by a super exponential law. This last point is in
total agreement with experimental and numerical studies
made in pipe flow [58]. Obviously, the dynamic of PPF is
expected to be richer since the spot spreads in both the x
and z directions and the splitting will most likely occur in
the spanwise direction as seen in visualization experiments
[912]. However we observed, at Re = 4000, islands of low
turbulence inside a turbulent spot suggesting a spreading
in the streamwise direction.

3.3.3 2D extension

This one-dimensional model is obviously too simple to
capture the richness of the transition in plane Poiseuille
flow but it allows us to identify relevant parameters and
we can now extend this model to two dimensions. We add
the spanwise coordinate z in our model, and we simu-
late u(x, z,t) and ¢(x, z,t). The equation for u remains
unchanged but we add some diffusion in the spanwise di-
rection for q. The new system is composed of equation

and .

8tq+u8zq:q[u—1+r—(7“+6)(q—1)2]
+D\|aa:wq+DLGZZQ+O-qn

where D and D are the coefficients of diffusion in the
streamwise and spanwise directions and 7(z, z,t) is Gaus-
sian noise.

Unlike in plane Couette flow, due to the advection of
the turbulent spot by the mean flow, it is difficult to obtain
experimental statistics on the mean lifetime or splitting
time of spots in plane Poiseuille flow. There are only few
studies which mention the splitting of turbulent spots in
plane Poiseuille flow [9[12]. These studies do not present
any systematic statistics on the spot, but they only re-
port the observation of ”equilibrium” spots or split spots.
One important characteristic of spots is the V-shape that
is easily observable after few times. From a numerical
point of view, DNS of large aspect ratio Poiseuille flow
are costly in term of computer time. In consequence most
of numerical studies are only concerned with an isolated
spot [T4L15]. However, more recently,the question of the
existence of turbulent bands in plane Poiseuille flow has
received attention. Aida et al. [I7] performed a DNS of
transitional plane Poiseuille flow in a very large domain
(730h x 2h x 365h) and observed the development of a tur-
bulent spot in the forms of two arms growing in the x — z
plane with an angle of approximately +45° and then they
observed the appearance of turbulent bands. Tuckerman
[19] used the tilted domain technique [31] to observe the
formation of turbulent bands.

Due to the lack of statistics on turbulent spots in PPF,
we will just check if our model is able to mimic some
general features of the transition to turbulence: localized
spots, turbulent bands and featureless turbulence.

We start simulations in a (200h x 100h) wide domain
with periodic boundary conditions in both spanwise and
streamwise direction. Initially, u is set to 1 uniformly and
q is set to a random initial condition in the entire domain.
Snapshots of those simulations are presented on figure
for different values of r. For small r, only a few localized
spots survive. After they had been generated, these spots
follow the mean lifetime statistics independently and dis-
appear suddenly at different times. Finally, at t = 100,
only one spot survives. At high r, we observe that the
entire domain becomes turbulent and that the mean of u
falls to 0.8. This regime is comparable to featureless turbu-
lence. The most interesting regime occurs at intermediate
r. In this regime, we observed the formation of alternated
turbulent and laminar bands. These bands form an angle
with respect to the streamwise direction of approxima-
tively © = 50° in a relative good agreement with Duguet
et al. [60] in plane Couette flow. However if the simula-
tion is carried out for larger time, the bands tend to form
an angle of © = 90°. The space between bands is largely
governed by D). This is due to the diffusion term in the
spanwise direction which tends to make g uniform in this
direction. To avoid this phenomenon one idea is to use
the large scale flow induced around a localized turbulent
spot (see §3.2)) as a driving mechanism of the spreading of
spot. This idea has been suggested by Duguet et al. [23]
in plane Couette flow. In future work we will add to this
model the spanwise velocity, w, as a third variable.

4 Conclusion

We have performed new precise measurements of the three
components of the flow in and around a turbulent spot
in transitional channel flow. We have been able to ob-
serve for the first time travelling-wave-like structures close
to the trailing edge of a spot. This observation supports
the idea of dynamical systems theory that these exact co-
herent structures may indeed capture the nature of fluid
turbulence. We also report a precise description of the
large scale flow associated with the turbulent spot. We
confirmed that this flow consists of a quadrupole centred
on the spot and give a description of its variation along
the wall normal coordinate.

Finally, starting from the continuous model of pipe
flow proposed by Barkley [50], we have built a set of two
coupled non-linear equations for two variables, the center
line velocity and the turbulence intensity, which captures
the main features of transitional plane Poiseuille flow.
We have been able to mimic the appearance of turbulent
bands in plane Poiseuille flow.
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