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Using a large-time-resolved particle image velocimetry field of view, a developing
turbulent spot is followed in space and time in a rectangular channel flow for more
than 100 advective time units. We show that the flow can be decomposed into a
large-scale motion consisting of an asymmetric quadrupole centred on the spot and a
small-scale part consisting of streamwise streaks. From the temporal evolution of the
energy of the streamwise and spanwise velocity perturbations, it is suggested that a
self-sustaining process can occur in a turbulent spot above a given Reynolds number.
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1. Introduction

Transition to turbulence in wall-bounded shear flows like plane Couette (PCF),
Hagen–Poiseuille (HPF) or plane Poiseuille (PPF) flow and boundary layer flow occurs
in the presence of localized coherent structures, known as turbulent spots. These
objects, first discovered by Emmons (1951), are not composed of a single large-scale
homogeneous structure, but of an assemblage of small-scale longitudinal vortices,
separated from laminar flow by sharp fronts. For reviews of the subject see Riley &
Gad-el Hak (1985), Henningson, Johansson & Alfredsson (1994) and Mathew & Das
(2000).

The dynamics of a subcritical transition to turbulence, first observed in pipes by
Reynolds (1883), is strongly related to the existence and interplay of these localized
structures. Other isolated structures have been observed in a great variety of physical
systems, such as thermal convection, magnetic liquids, granular material or buckling
instabilities. Localized structures are related to subcritical instabilities, i.e. due to
finite-amplitude perturbations (Knobloch 2008).

In the present study, we present an exhaustive description of turbulent spots in a
rectangular channel, in a range of Reynolds numbers in which transition occurs. The

† Email address for correspondence: gregoire.lemoult@espci.fr

c© Cambridge University Press 2013 731 R1-1

mailto:gregoire.lemoult@espci.fr


G. Lemoult, J.-L. Aider and J. E. Wesfreid

linear theory of stability predicts undisturbed stable laminar Poiseuille flow up to
Re = 5772 (Orszag 1971), but experiments show transition at Reynolds numbers near
Re ≈ 1300 (Carlson, Widnall & Peeters 1982; Klingmann 1992; Lemoult, Aider &
Wesfreid 2012), in the form of isolated turbulent spots.

Research on turbulent spots in channel flow has been performed with flow
visualizations (Carlson et al. 1982; Alavyoon, Henningson & Alfredsson 1986), local
measurements (Klingmann 1992; Seki & Matsubara 2012) and numerical simulations
in both PPF (Henningson, Spalart & Kim 1987; Henningson & Kim 1991; Tsukahara,
Seki, Kawamura & Tochio 2005; Aida, Tsukahara & Kawaguchi 2011; Takeishi et al.
2012) and PCF (Lundbladh & Johansson 1991; Schumacher & Eckhardt 2001; Lagha
& Manneville 2007; Duguet & Schlatter 2013). To our knowledge, no experiments
have been carried out on the detailed inner structure of the spots in a channel flow
like those experimentally performed in pipe flow by van Doorne & Westerweel (2009),
providing quantitative measurements of the full velocity field inside a turbulent spot.

Turbulent spots show transient growth, after which they either decay or are
sustained, showing a complex spatio-temporal intermittent behaviour. Many questions
remain open about the growth (streamwise expansion), the spreading (spanwise
expansion) and the interaction of these turbulent domains, surrounded by laminar
ones. The inhomogeneity of flow friction generates a coupling between the flow at
the intermediate scale inside the turbulent domain and an external induced large-
scale flow which can influence the morphology of turbulent spots. This topic has
been studied theoretically and numerically, especially in PCF (see e.g. Schumacher
& Eckhardt 2001; Lagha & Manneville 2007), but not yet observed experimentally.
The spot spreading can be seen as a consequence of this large-scale flow as pointed
out by Duguet & Schlatter (2013) in PCF in relation to the random nucleation of
new streaks in the vicinity of the turbulent–laminar boundary (Duguet, Le Maı̂tre &
Schlatter 2011). It has been observed in PPF that the leading and trailing edges of
spots expand at different velocities (Carlson et al. 1982; Alavyoon et al. 1986) but
the mechanism behind these observations remains unclear although there have been
interesting suggestions in HPF. Shimizu & Kida (2009), Duguet, Willis & Kerswell
(2010) and Hof et al. (2010) highlighted the local instability which occurs at the
trailing edge as a driving mechanism of the spot. In certain cases, in PPF and
PCF, turbulent spots show a complex spatio-temporal behaviour, including collective
organization and branching in the form of bands (see e.g. Prigent et al. 2003;
Tuckerman & Barkley 2011, and references inside).

Many theoretical efforts have attempted to understand the mechanisms sustaining the
existence of turbulent spots. The non-normal linear stability theory explains that inner
structures present maximum transient growth when they are oriented in the direction
of the flow as streamwise streaks (Reddy & Henningson 1993; Trefethen et al. 1993).
Linear stability theory also predicts the breakdown of these streaks (Reddy et al.
1998). However linear models fail to predict the existence of a sustained state in
which laminar and turbulent areas coexist. A preferred framework for understanding
this situation is provided by nonlinear models of self-sustained turbulence (Waleffe
1997; Shimizu & Kida 2009; Hall & Sherwin 2010; Barkley 2011). From these
models, we expect that if sufficiently strong streamwise streaks are present inside
the spots, a longitudinal wavy instability occurs. This instability will regenerate the
initial streamwise streaks through a nonlinear mechanism. If this is the case, nonlinear
amplification occurs, in time and space, inside the spot leading to a turbulent state.
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FIGURE 1. (a) Schematic view of the water channel (for details see Lemoult et al. 2012).
The development section is 1 m long and the test section is 1.2 m long. Its cross-section is
20 × 150 mm2. We use three synchronized high-speed cameras to measure the velocity field
in the plane y = 0.5h in a (1x,1z) = (91h, 15h) area. (b) Laminar profile measured by PIV
immediately after x = 0 for Re = 2000. Dashed lines are the theoretical profile and points are
experimental data. In blue, profile measured in the z = 0 plane and in red, profile measured in
the y= 0 plane.

The purpose of this article is to provide a precise experimental description of the
flow field in and around a turbulent spot in PPF during its genesis and to discuss the
relevance of the nonlinear process of self-sustainability.

2. Experimental set-up

The experimental system is composed of a 3 m long Plexiglas, constant-pressure-
driven channel (figure 1). The test section half-height is h = 10 mm, its length is
220h, and its width is 2Lz = 15h. The Reynolds number, Re = uclh/ν (ucl is the
centreline velocity and ν the kinematic viscosity of the fluid), is estimated from
volume flow measurements, assuming ubulk = (2/3)ucl. The x, y and z axes are,
respectively, the streamwise, wall-normal and spanwise coordinates, with y = 0 in the
middle of the channel and (x, z) = (0, 0) where perturbations are injected. We define
the advective time unit t∗ = t ucl/h and the moving coordinate x∗ = x/h − t ubulk/h.
The design of the inlet section, together with the smooth connections between all
parts of the channel, minimize the upstream perturbations and keep the flow laminar
up to Re = 5500, which corresponds to the maximum free-stream velocity of this
channel. The perturbation is generated 100h downstream from the inlet to ensure a
fully developed Poiseuille flow. Figure 1(b) shows the laminar profile measured by
particle image velocimetry (PIV) immediately after x= 0 for Re= 2000. The parabolic
velocity profile is recovered at z = 0 and the profile at y = 0 is flat in the range
−6h< z< 6h.

The flow is perturbed by a round water jet normal to the flow, with diameter
d = 0.2h, drilled into the upper wall. In the following, we will study the response
of the flow to a single, short perturbation (1t = 150 ms). The structure of the flow
induced by the jet may be complex and depends strongly on the amplitude of the
perturbation. Nevertheless, above a critical value and above Re ≈ 1300, this small
perturbation will always trigger the development of a turbulent spot (Lemoult et al.
2012).
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FIGURE 2. Temporal evolution of a developing turbulent spot visualized by its streamwise
component u in a horizontal plane at y = +0.5h. Rows are, from top to bottom, respectively
t∗ = 20, 40, 60, 80, 100 and 120. For Re = 1000, (a), we observe the transient growth of
the perturbation followed by its decay. On the other hand, for Re = 3000, (b), after an initial
transient growth, the perturbation becomes sustained.

A time-resolved particle image velocimetry (TR-PIV) system is used to measure
two-dimensional velocity fields (U,W) in the horizontal y=+0.5h plane (figure 1). In
the case of plane Poiseuille flow, the maximum streamwise fluctuations are expected
near planes y = ±0.5h. The plane y = +0.5h is preferred to y = −0.5h due to the
non-symmetric character of the injection (Klingmann 1992). The fluid is lit with
a 1 mm thick light sheet and seeded with neutrally buoyant particles (dp ≈ 20 µm).
In order to follow the spatial development of the perturbation as far as possible
from the injection point, three adjacent synchronized high-speed cameras were used
(figure 1). Using this set-up, the velocity field is measured over nearly the half-
length of the channel. The measurement area is 5h < x < 91h and −Lz < z < Lz

and is mapped with (Nx × Nz) = (1721 × 301) velocity vectors. The frame rate of
the cameras has been adapted for each Re to ensure five frames per advective time
unit.

3. Results and discussion

The measured velocity field U = (U,W) is decomposed as the sum of its laminar
component Ulam and a perturbation u. Figure 2 shows the time evolution of u for spots
at Re= 1000 (figure 2a) and Re= 3000 (figure 2b). In addition to the advection of the
perturbation by the mean flow, one can notice the streaky structure of the perturbation.
The lower Re corresponds to a transient growth and the decay of the perturbation
whereas the higher Re exhibits a sustained turbulent spot.

3.1. Scale separation
We define the spectral energy density Eu(k) of the streamwise component u as follows.
We first take the two-dimensional Fourier transform û(k) of u and transform it to
polar coordinates with k = 2π/λ =√

k2
x + k2

z and θ = arctan(kz/kx), and then obtain a
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FIGURE 3. Azimuthally averaged pre-multiplied spectrum for streamwise k〈Eu(k)〉t (blue) and
spanwise component k〈Ew(k)〉t (red) of the velocity field measure for Re = 3000. The spectrum
is time averaged over 80 < t∗ < 100. The dotted line corresponds to λ = 5h and delimits the
large- and small-scale part of the flow.

spectrum azimuthally averaged over the angle θ by defining

Eu(k)=
∫ 2π

0
|û(k)|2k dθ (3.1)

and analogously for the spanwise component w.
On figure 3, we present k〈Eu(k)〉t and k〈Ew(k)〉t for Re = 3000, where 〈Eu(k)〉t and
〈Ew(k)〉t are time averaged over 80 < t∗ < 100 in order to improve the signal-to-noise
ratio. For sufficiently high Re, the flow can be decomposed into different scales, a
large-scale flow (λ > 5h) and a small-scale flow (λ < 5h); this separation is indicated
by the dotted line on figure 3. This observation justifies the decomposition of the
fluctuating part of the flow into two components: the large-scale flow ularge and the
small scale flow ũ. So that U = Ulam + ularge + ũ

Using a fourth-order filter with a cut-off wavelength λc = 5h, the small-scale and
large-scale structures of a turbulent spot are computed, and these are shown on
figure 4. The small-scale flow is mainly formed of coherent low- and high-speed
streaks whereas the large-scale flow corresponds to the generation of large-scale
vertical vorticity Ωy.

The large-scale flow is formed of a quadrupole centred on the spot. This large-scale
flow is similar to that observed in PCF (see e.g. Schumacher & Eckhardt 2001; Lagha
& Manneville 2007), except that the left–right symmetry is broken due to the mean
advection. The turbulent area (which corresponds to the streaky flow) acts on the
main flow as an obstacle and induces the large-scale flow. In return, the large-scale
flow drives turbulent patches into the laminar area. This phenomenon seems to be
responsible for the shape of spots observed by Carlson et al. (1982), Alavyoon et al.
(1986) and Aida et al. (2011), and has been recently pointed out by Seki & Matsubara
(2012) in PPF and by Duguet & Schlatter (2013) in PCF.

The large-scale flow computed here is obtained from a local measurement, in the
y = 0.5h plane, of the whole large-scale flow. Nevertheless, it has been checked that
the quadrupole is also present in the y= 0 plane. It should also be present at y= 0.5h
due to the y-symmetry of the PPF. In consequence the y-averaged large-scale field
should not be far from the field presented here. It is also important to notice that
the relative small aspect ratio of the channel affects this large-scale flow. Due to the
incompressible nature of the flow, it is expected that the large-scale flow in a wider
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FIGURE 4. Instantaneous flow field at t∗ = 80 for Re = 3000. (a) Small-scale streamwise
velocity fluctuations ũ, (b) small-scale spanwise velocity fluctuations w̃ and (c) large-scale
vorticity Ωy, the arrows represent the large-scale flow field.

channel will be weaker, but still present, especially the accelerated areas at each side
of the leading edge.

3.2. Small-scale flow
In the following, we focus on the small-scale flow ( ũ, w̃) which corresponds to the
turbulent part of the flow defined in the previous section.

Figure 5 presents the temporal evolution of the spanwise and streamwise spectra of
ũ for different Re. Figure 5(a) (Re= 1000) shows that the energy is concentrated along
streamwise modes with a wavenumber kz = 3h−1, which corresponds to a wavelength
of ∼2h. The flow is dominated by streaky structures, alternating between fast and
slow streamwise streaks. These streaks are first generated by the initial perturbation,
which induces a pair of quasi-streamwise counter-rotating vortices, before generating
high- and low-streamwise-velocity streaks via the lift-up effect. This measurement
is in accordance with previous measurements performed by Klingmann (1992). In
the streamwise spectra, one can see that the energy is concentrated in the lowest
wavenumbers. This is due to the spatial extension in the streamwise direction of the
perturbation.

On the other hand, for higher Re, the turbulent spot can no longer be considered
homogeneous: two different regions can be distinguished (figure 4 and supplementary
movie 1 available at http://dx.doi.org/10.1017/jfm.2013.388). At the leading edge of
the spot (x> 0), high and low speed streaks can be found, with the same wavenumber
kz = 3h−1 as in the Re = 1000 case (figure 5). The upstream half of the spot (x < 0)
presents more complicated structures exhibiting both streamwise and spanwise modes
(figures 5b and 5c). These structures are a consequence of the destabilization of
streamwise streaks in kx modes. In our experiments it is difficult to discriminate
between varicose and sinuous modes since the streaks are tangled. Nevertheless, both
varicose and sinuous modes could be present since both are unstable (Waleffe 1997).

731 R1-6

http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388
http://dx.doi.org/10.1017/jfm.2013.388


Turbulent spots in a channel: large-scale flow and self-sustainability

kz

kz

kz

kx

kx

kx

0

5

10

0

5

10

0

5

10

0

1

2

3

0

1

2

3

0

1

2

3

0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 10020 40 60 80 100

(a)

(b)

(c)

FIGURE 5. Temporal evolution of the streamwise and spanwise distribution of energy spectra
for different Re (a, Re = 1000; b, Re = 2000 and c, Re = 3000). Each spectrum is scaled by its
maximum. Arrow in (a) corresponds to the maximum of energy reached for tmax. Arrows in (b)
and (c) correspond to the appearance of kx modes.

3.3. Temporal evolution

In order to follow the emergence of such instabilities both in the streamwise direction
and in time we define the following quantities:

Estreaks(x, t)= 1
2

∫ Lz

−Lz

ũ2 dz and Ez(x, t)= 1
2

∫ Lz

−Lz

w̃2 dz (3.2)

Estreaks(x, t) represents the kinetic energy associated with the streamwise component of
the perturbation, basically the streaky flow, while Ez(x, t) corresponds to the kinetic
energy associated with the spanwise component of the flow at a given location along
the channel.

Figure 6 presents the temporal evolution of the global spot energy integrated along
x, 〈Estreaks〉x(t), for Re = 1000, 2000 and 3000. For each value of Re, we observe
an initial increase of the energy. For Re = 1000, we measure tmax = 58 ± 2, the
time at which the spot energy reaches its maximum. This time can be compared to
the measurements performed by Elofsson, Kawakami & Alfredsson (1999) and the
prediction of Reddy & Henningson (1993). For (kx, kz) = (0, 3), Reddy & Henningson
(1993) found tmax = 54. This transient growth is explained by the non-normal nature of
the Navier–Stokes operator linearized around the parabolic Poiseuille profile. Indeed,
despite eigenvectors with negative real parts transient growth of finite-amplitude
perturbations can occur (Trefethen et al. 1993). This transient growth is also observed
for higher Re but for a specific time, tnonlin, the energy shows a sudden increase. At
this time the topology of the velocity field changes radically and kx modes appear
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FIGURE 6. Temporal evolution of (a) the global energy associated with the streaks and (b) the
ratio between the latter and the energy associated with the spanwise fluctuation. Red: Re= 1000,
blue: Re= 2000 and black: Re= 3000. Squares represent the maximum in transient growth, tmax.
Circles represent the appearance of nonlinear effects at tnonlin.

Re tmax tnonlin vEmax vtrailing vleading

1000 58±2 — 0.75±0.02 — —
2000 — 75±2 0.66±0.01 0.55±0.01 0.84±0.01
3000 — 40± 2 0.63±0.01 0.50±0.01 0.83±0.01
4000 — — 0.63±0.02 0.47±0.03 0.83±0.05

TABLE 1. Summary of the results for different Re.

(figures 5 and 7). For t∗> tnonlin, the ratio 〈Estreaks〉x/〈Ez〉x becomes constant, suggesting
a self-sustaining mechanism (Duriez, Aider & Wesfreid 2009).

Figure 7 presents the spatio-temporal evolution of local energies associated with the
streamwise streaks and spanwise fluctuations for three Re in the frame moving at the
bulk velocity. For Re = 1000 (figure 7a), it is possible to follow the position, xEmax , of
the kinetic energy maximum Emax = Estreaks + Ez as a function of time. The velocity
vEmax = ∂xEmax/∂t can be considered to be the group velocity of the perturbation. For
Re = 1000, the perturbation travels slightly faster than the bulk velocity ubulk since
vEmax = 0.75 ± 0.02 (solid line in figure 7a and table 1). One can also observe an
increase in the energy associated with streaks until tmax, which corresponds to the
transient growth of the perturbation. Finally, this growth is not strong enough to
trigger nonlinear mechanisms able to sustain turbulence and eventually we observe an
exponential decay from tmax.

On figure 7(b), one can see that there is a drastic change for Re = 2000 compared
to Re = 1000. After a short algebraic growth (see also figure 6) until tnonlin = 75 ± 2,
we observe the increase of energy associated with spanwise fluctuations. This indicates
that streaks which were already present in the flow become unstable. We also observe
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FIGURE 7. Spatio-temporal evolution of local energies associated with the streamwise streaks,
Estreaks(x∗, t) (left column) and spanwise fluctuations, Ez(x∗, t) (right column) for different Re (a,
Re = 1000; b, Re = 2000 and c, Re = 3000) in the frame moving at the bulk velocity. Solid line
represents the fit by a linear function of the streamwise coordinate of the maximum of kinetic
energy Emax. Dotted lines represent the fit by a linear function of the streamwise coordinate
of the trailing and leading edge of the spot. Arrow in (a) corresponds to the maximum of
energy reached for tmax. Arrows in (b,c) correspond to the appearance of energy associated with
spanwise fluctuations.

the appearance of a trailing front which indicates a transition in the dynamics of the
spot, underlined by the richness of the spectrum for t > tnonlin (figure 5). Note that
this nonlinear phenomenon takes place in the upstream part of the spot (x∗ < 0). The
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downstream part of the spot is dominated by streamwise elongated streaks as can be
seen in supplementary movie 1. These structures travel faster than the turbulent spot
and are slowly damped by viscous effects.

The spatio-temporal diagram in figure 7(c) (Re = 3000) is similar to that obtained
for Re = 2000. One can still see the development after a time tnonlin = 40 ± 2 of the
energy associated to spanwise perturbations. The transient growth of the turbulent spot
is masked by the earlier development of this nonlinear part of the flow compared to
Re= 2000. The second notable difference is that the group velocity of the perturbation
is smaller than the bulk velocity. The speed of the trailing edge is also smaller whereas
the speed of the leading edge remains unchanged.

4. Conclusion

Using time-resolved PIV, we have followed the development of an induced
perturbation in the subcritical regime in plane Poiseuille flow for more than 100
advective time units. From these measurements, we have been able to elucidate the
process which governs the formation of a turbulent spot. First, a linear stage of
transient growth and three-dimensional extension of the perturbation concentrates the
energy into a well-defined spanwise mode with λ = 2h. This first stage is followed
in the case of a sufficiently high Re by a nonlinear stage which involves the
destabilization of the streaks previously formed and the redistribution of the energy
into streamwise modes. The time evolution of energies associated with the streaks and
with the spanwise fluctuations suggests the existence of a self-sustaining process in the
turbulent spot.

We also have pointed out the separation of the flow into a small-scale motion,
mainly composed of destabilized streamwise streaks, and a large-scale flow which
surrounds the turbulent spot. This large-scale asymmetric quadrupole centred on the
spot has been experimentally measured for the first time and could be responsible
for the shape of the spot observed in visualization experiments (Carlson et al. 1982;
Alavyoon et al. 1986) and numerically (Aida et al. 2011).
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