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Motivated by the desire to understand complex transient behaviour in fluid flows, we
study the dynamics of an air bubble driven by the steady motion of a suspending
viscous fluid within a Hele-Shaw channel with a centred depth perturbation. Using both
experiments and numerical simulations of a depth-averaged model, we investigate the
evolution of an initially centred bubble of prescribed volume as a function of flow
rate and initial shape. The experiments exhibit a rich variety of organised transient
dynamics, involving bubble breakup as well as aggregation and coalescence of interacting
neighbouring bubbles. The long-term outcome is either a single bubble or multiple
separating bubbles, positioned along the channel in order of increasing velocity. Up
to moderate flow rates, the life and fate of the bubble are reproducible and can be
categorised by a small number of characteristic behaviours that occur in simply connected
regions of the parameter plane. Increasing the flow rate leads to less reproducible
time evolutions with increasing sensitivity to initial conditions and perturbations in the
channel. Time-dependent numerical simulations that allow for breakup and coalescence
are found to reproduce most of the dynamical behaviour observed experimentally,
including enhanced sensitivity at high flow rate. An unusual feature of this system
is that the set of steady and periodic solutions can change during temporal evolution
because both the number of bubbles and their size distribution evolve due to breakup
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and coalescence events. Calculation of stable and unstable solutions in the single- and
two-bubble cases reveals that the transient dynamics is orchestrated by weakly unstable
solutions of the system that can appear and disappear as the number of bubbles changes.

Key words: Hele-Shaw flows, bubble dynamics

1. Introduction

Fundamental studies of complex fluid mechanical phenomena usually concentrate on the
steady or periodic flows that are observed after some time. Experimental observation of
steady or periodic flows is used to infer that they are stable solutions of the underlying
governing equations. Unstable solutions of the governing equations, on the other hand, are
often ignored, being thought to be unimportant and unobservable in experiments. In fact,
unstable solutions can be glimpsed fleetingly in experiments because they influence the
transient evolution of a flow, which is often as important as the final state.

In this paper, we conduct detailed experiments to characterise the transient evolution and
ultimate disposition of a simple fluid mechanical system that nonetheless exhibits complex
nonlinear behaviour: a finite air bubble propagating within a liquid-filled Hele-Shaw
channel containing a relatively small depth perturbation; see figure 1. The stability of
finite steadily propagating bubbles in unperturbed channels has previously been addressed
both experimentally (Kopf-Sill & Homsy 1988) and numerically (Tanveer & Saffman
1987). Interfacial flows in narrow gaps can also exhibit considerable disorder (Saffman
& Taylor 1958; Gollub 1995; Couder 2000; Vaquero-Stainer et al. 2019) and transient
behaviour is then particularly significant, in the absence of apparent stable steady or
periodic states. These flows are rarely investigated from a dynamical systems perspective,
however. Although our primary interest is to use the system as a model in which to study
the complex transient dynamics, the flow of bubbles through channels also has a number
of industrial, chemical and biological applications, particularly in microfluidic geometries
(Anna 2016).

The theory of dynamical systems has always been closely linked to fluid mechanics
with, for example, low-dimensional models of turbulence (Hopf 1948) and of atmospheric
convection (Lorenz 1963) each playing a part in its development. One of the tenets of the
dynamical systems approach is to reduce the dynamics of complex fluid flows to equivalent
low-dimensional systems by identifying suitable stable and unstable invariant objects in
phase space, e.g. steady states and periodic orbits. Methods developed for the direct
computation of invariant objects and connections between them, such as bifurcations,
(Cliffe, Spence & Tavener 2000; Farano et al. 2019; Tuckerman, Langham & Willis 2019)
give a more efficient and complete characterisation of the dynamics than time simulation
alone (Dijkstra et al. 2014); and the approach has been used in many different areas of fluid
dynamics over many decades. Recent examples include studies of turbulence (Budanur
et al. 2017), convection (Sánchez Umbría & Net 2019) and droplet breakup (Gallino,
Schneider & Gallaire 2018).

An important class of unstable invariants are steady states with relatively few unstable
directions, sometimes known as saddles, which in the simplest case can be illustrated by
the two-dimensional steady stagnation point flow of a fluid. The stagnation point itself
is an unstable fixed point of the flow because fluid particles will move away if displaced
from the stagnation point. As well as the stagnation point, the important invariant objects
are the stable and unstable manifolds, which are simply the dividing streamlines of the
flow. These manifolds divide the flow into four different regions and a particle that
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Life and fate of a bubble in a perturbed Hele-Shaw channel
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Figure 1. (a) Schematic diagram of a bubble propagating in the experimental channel. (b) End view of the
channel with a centred, rectangular, depth perturbation (in the absence of a bubble). (c) Schematic diagram of
the experimental set-up.

starts in one region cannot move into another. Hence a complete characterisation of the
ultimate fate of a fluid particle follows from knowing its position relative to the dividing
streamlines. In other words, the manifolds are the so-called basin boundaries of this
simple system and the stagnation point is a saddle that is locally attracting within the
stable manifold. A lower-dimensional invariant object on a basin boundary that attracts
trajectories along the boundary is known as an edge state, terminology introduced in recent
investigations into the transition to turbulence (Schneider & Eckhardt 2009). Edge states
are not necessarily steady solutions, but they must have at least one unstable direction,
away from the basin boundary. The fact that saddles are locally attracting is why features
of these unstable solutions can appear in the transient evolution of the system. If there are
multiple saddles or more general unstable invariant objects present then the system can
exhibit very complex dynamics as it moves between them (Reetz & Schneider 2020).

In our chosen system, the bubble exhibits a variety of complex behaviours including
symmetry breaking, bistability, steady and periodic motion as well as non-trivial transient
evolution (Franco-Gómez et al. 2018). The Reynolds number remains small and the
nonlinearities arise only through the presence of the air–liquid interface. Hence, direct
observation of the interface can be used to distinguish different possible states of the
system. We develop a new experimental protocol to generate a variety of different initial
bubble configurations and then investigate the bubble’s subsequent behaviour under
imposition of flow. We find a rich variety of transient evolutions that can, nonetheless, be
rationalised and classified because they occur in distinct regions of the parameter space.

In addition the system is attractive from a theoretical point of view because its behaviour
can be captured both qualitatively and quantitatively by a depth-averaged set of equations
(Franco-Gómez et al. 2016), provided that the aspect ratio of the channel’s cross-section
is sufficiently large. Keeler et al. (2019) presented a purely theoretical study of the
depth-averaged model in which unstable periodic orbits were found to be edge states
on the boundary between steady propagation along either the centreline (symmetric) or
biased towards one side of the channel (asymmetric). In the present paper, we synthesise
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experimental data and numerical solutions of the depth-averaged equations to examine the
influence of a wide variety of stable and unstable invariant objects on the behaviour of the
bubble.

A distinct feature of the system is the propensity of the bubble to break up into two
or more smaller bubbles that may or may not recombine in the subsequent dynamics.
The transition from single to multiple bubbles allows the evolution of the invariant-object
structure for fixed parameter values, which is rather unusual. The transition is defined by
a change in the bubble topology with time, which cannot be captured via analysis of the
steady states and their (dynamic) bifurcations, and, therefore, necessitates the study of
the transient dynamics. The resulting complex dynamics is nonetheless orchestrated by a
variety of unstable invariant solutions of the depth-averaged system that are edge states on
basin boundaries between different attracting states.

The paper is organised as follows. The first three experimental sections present the
experimental set-up and protocol (§ 2), the method used to set the initial bubble shape (§ 3)
and the experimental results (§ 4). This is followed by a presentation of the depth-averaged
model and numerical methods (§ 5.1) and by an interpretation of the experimental results
in terms of dynamical system arguments (§§ 5.2–5.4). We draw our conclusions in § 6.

2. Experimental methods

2.1. Experimental set-up
A schematic diagram of the experimental set-up is shown in figure 1. The Hele-Shaw
channel used in the experiments consisted of two parallel float glass plates of dimensions
170 cm × 10 cm × 2 cm separated by two strips of stainless steel shim. The shims were
sprayed with a thin layer of adhesive (3M spray mountTM) and bonded to the bottom
glass plate with a distance W∗ between them, which was imposed using gauge blocks.
The channel height was H∗ = 1.00 ± 0.01 mm and its width was W∗ = 40.0 mm with
variations up to ±0.1 mm over the length of the channel L∗ = 170 cm, yielding an aspect
ratio α = W∗/H∗ = 40. A small depth perturbation of rectangular cross-section, width
w∗ = 10.0 ± 0.1 mm and thickness h∗ = 24 ± 1 μm, was positioned on the bottom glass
plate, symmetrically about the channel centreline; see figure 1(b). This depth perturbation,
henceforth referred to as a rail, was made from a translucent adhesive tape strip bonded to
the bottom glass plate and its surface gently smoothed with sandpaper of grit size P1500.
The strip width was larger than w∗ and the excess width on each side was trimmed using
a sharp blade placed against a 15 mm gauge block sliding along the fixed steel shims. The
top glass plate was then placed onto the shims and the channel was sealed with clamps and
levelled horizontally to within 0.03◦.

The channel was filled with silicone oil (Basildon Chemicals Ltd) of dynamic viscosity
μ = 0.019 Pa s, density ρ = 951 kg m−3 and surface tension σ = 21 mN m−1 at the
laboratory temperature of 21 ± 1 ◦C. Three cylindrical brass pieces embedded into the top
glass plate provided oil inlet and outlet ports as well as an air injection port (see figure 1c),
and all connections were made with rigid plastic tubes. The output from three syringe
pumps in parallel (Legato 200 series) was fed to a three-way solenoid valve connected to
the channel inlet and to an oil reservoir at atmospheric pressure, which was also linked to
the outlet of the channel via a two-way solenoid valve. Hence, depending on the setting of
the three-way inlet valve, oil could be injected into the channel at a constant flow rate Q∗
(open outlet valve) or withdrawn from the reservoir to refill the syringes.

The air injection port was connected to ambient air through a two-way solenoid valve.
An air bubble was injected into the channel through the air port by closing the outlet valve,
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Life and fate of a bubble in a perturbed Hele-Shaw channel

opening the air valve and slowly withdrawing a set volume of oil from the channel via a
syringe pump connected to the outlet. Once the bubble was formed, the air valve was
closed, the outlet valve was opened, and a small amount of oil was slowly injected into the
channel to nudge the bubble forward. This prevented the compression of the bubble into
the air port when flow was initiated. A bubble centring device was positioned downstream
of the bubble injection port, where the width of the channel was reduced to W∗

i = 17 mm
over a length of 110 mm which expanded linearly over 40 mm into the channel of width
W∗ = 40 mm, thus featuring an expansion ratio of W∗/W∗

i = 2.4. The rail started within
this device.

A centred bubble of controlled shape was obtained in the channel using a protocol
described in § 3. This bubble was then set in motion from rest by imposing a constant
oil flow rate Q∗. The propagating bubble was filmed in top view using a CMOS camera
mounted on a motorised translation stage, which was placed above the channel and
spanned its entire length L∗. An empirical relation between the bubble speed and oil flow
rate was used to set a constant translation speed for the camera so that the propagating
bubble remained within the field of view of the camera for the duration of the experiment.
The channel was uniformly back lit with a custom made LED light box, so that the oil–air
interface appeared as a black line through light refraction. The syringe pumps, valves,
translation stage and camera were computer controlled via a LabVIEW code.

We measured the projected area A∗ of the bubble and its centroid position from the
bubble contour, which was identified by an edge detection algorithm in terms of x∗ and y∗
coordinates spanning the length and width of the channel, respectively (see figure 1). We
will examine the effects of flow on A∗ in § 2.2. We also determined the bubble velocity
U∗

b along the x∗ direction from the camera speed and the centroid position on successive
frames. Henceforth, we will refer to the bubble size in terms of an equivalent radius
r∗ = √

A∗/π based on the projected area of the bubble. We only considered bubbles larger
than the rail, i.e. 2r∗ > w∗, for which the bubble confinement ratio r∗/H∗ was therefore
larger than 5. We denote as y∗

c the distance from the bubble centroid to the centreline
of the channel. We choose the channel half-width W∗/2 and the average oil velocity
in a channel without a rail U∗

0 = Q∗/(W∗H∗) as the characteristic length and velocity
scales in the (x∗, y∗) plane, respectively. The non-dimensional bubble size, centroid offset
and velocity are therefore r = 2r∗/W∗, yc = 2y∗

c/W∗ and Ub = U∗
b/U∗

0 , respectively. We
define a non-dimensional flow rate Q = μU∗

0/σ which is a capillary number based on the
mean oil velocity (in the channel without a rail) and which ranges between 0.005 and 0.19
in the experiment. Note that Ub measures the bubble velocity relative to that of the fluid
far from the bubble, and need not vary monotonically with Q.

The capillary number based on the bubble velocity, which measures the ratio of viscous
to capillary forces, is Ca = μU∗

b/σ with values in the range 0.008 ≤ Ca ≤ 0.48. The Bond
number Bo = ρgH∗2/4σ = 0.11, where g is the gravitational acceleration, indicates that
bubble buoyancy is negligible because Jensen et al. (1987) showed that for Bo < 1, there
is no change to the pressure jump across the fluid interface in the small-Ca asymptotic
limit of the Saffman–Taylor model. The ratio of inertial to viscous forces yields a
reduced Reynolds number Re = ρU∗

0H∗2/μW∗ which takes values less than 0.3 in our
experiments, thus indicating broadly negligible inertia.

2.2. Effect of flow on the projected area of the bubble
The projected area of a propagating bubble is affected by two competing effects: films of
oil separating the bubble from the top and bottom glass plates tend to increase the projected
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area of the bubble, while the pressure increase associated with the imposition of flow in
the channel reduces the projected area through compression of the bubble.

Films of oil on the top and bottom glass plates encapsulate a newly created bubble
because silicone oil wets the channel walls. When the bubble is at rest (Q∗ = 0), these
films tend to be very thin, but they drain so slowly that they are always present on the time
scale of the experiment. The thickness of these films increases with the capillary number
for a propagating bubble (Bretherton 1961), so that for a fixed bubble volume, the projected
area of the bubble increases accordingly.

We estimated the effect of wetting films in our experiments by measuring their thickness
for a bubble propagating in a channel where the rail was absent; see appendix A. We found
that for the maximum value of Ca = 0.48 investigated in this paper, the film thickness
averaged over the bubble area is 〈h∗

f 〉/H∗ ≈ 0.2 (i.e. 〈h∗
f 〉 ≈ 200 μm). This means that up

to 40 % of the channel depth is filled with oil, and that the bottom film could be up to 8
times thicker than the rail (h∗ = 24 ± 1 μm). We expect that the increasing film thickness
will lead to a reduced influence of the rail on the bubble propagation as the flow rate
increases.

Upon flow initiation, we systematically observed a net reduction of the bubble projected
area despite thickening wetting films, which suggests that compression of the bubble due
to the imposed flow plays a dominant role. This is illustrated in figure 2(a) in which a
bubble initially at rest (Q∗ = 0) with a static projected area A∗

s = 4.9 cm2 compresses
rapidly when a flow rate Q∗ = 150 ml min−1 is imposed to reach a minimum area of
A∗

Q = 4.3 cm2 (13 % reduction). This rapid decrease in bubble area is followed by a
slow increase of approximately 2 % as the bubble propagates towards the channel outlet.
We chose to propagate strongly asymmetric bubbles to measure compression effects
because they persist over the entire range of flow rates investigated, whereas symmetric
bubbles are prone to breakup when propagating from rest on the rail; see § 4. Such a
bubble was prepared by initially propagating it at a low flow rate Q∗ = 10 ml min−1

for which it systematically migrated sideways towards one of the deeper sides of the
channel before interrupting the flow; see § 4.3.2 for a summary of the states of steady
propagation.

Figure 2(b) shows the compression ratio A∗
Q/A∗

s for different flow rates Q∗ and three
representative static bubble sizes. A∗

Q/A∗
s decreases monotonically and approximately

linearly with increasing flow rate and does not depend significantly on the bubble size.
A least-square linear fit A∗

Q/A∗
s = K0 − K∗Q∗ yields K0 = 0.98 and K∗ = 4.1×104 s m−3.

The intercept A∗
Q/A∗

s = 0.98 for Q∗ = 0 suggests a steep increase towards A∗
Q/A∗

s = 1.00
for vanishing flow rates, which was also reported by Franco-Gómez et al. (2017).

The compression ratio A∗
Q/A∗

s can be estimated by considering that the fluid pressure
acting on the bubble increases rapidly from atmospheric pressure P∗

A to P∗
A + G∗l∗ + G∗

t l∗t
when the flow is imposed. G∗ = 12μQ∗/(W∗H∗3) is the pressure gradient in the channel,
l∗ is the distance initially separating the bubble from the channel outlet, typically 110 cm
in our experiments and G∗

t = 8μQ∗/(πr∗4
t ) is the pressure gradient in the tube of radius

r∗
t = 2 mm and length l∗t = 120 cm connecting the channel outlet to the reservoir at

atmospheric pressure; see figure 1. Assuming ideal gas behaviour and neglecting wetting
films for simplicity, we get a compression ratio A∗

Q/A∗
s = (1 + (G∗l∗ + G∗

t l∗t )/P∗
A)−1. This

expression is plotted as a function of flow rate in figure 2(b). The discrepancy with the
experimental data is due to the increase in projected area resulting from the increase
in wetting film thickness when the bubble propagates, which partly compensates for the
reduction in bubble volume due to compression.
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Figure 2. Bubble compression in flow. (a) Variation of the projected area A∗ of a bubble initially at rest
(Q∗ = 0), asymmetric about the channel centreline, when a flow rate Q∗ = 150 ml min−1 is imposed at t∗ = 0
as indicated by the arrow. The bubble area rapidly decreases from its static value A∗

s = 4.9 cm2 to a minimum
value A∗

Q = 4.3 cm2 (13 % reduction) due to the sudden pressure increase in the channel, and then slowly
increases by approximately 2 % as it propagates towards the channel outlet where pressure is lower. Inset
snapshots indicate the shape of the bubble before and after flow imposition and the grey band is the rail.
(b) Compression ratio A∗

Q/A∗
s as a function of the dimensional flow rate Q∗ and non-dimensional flow rate

Q for three static bubble sizes. The data are accurately captured by the linear relation A∗
Q/A∗

s = 0.98 − K∗Q∗

where K∗ = 4.1 104 s m−3 (dash-dotted line). The dotted line corresponds to the prediction of the compression
ratio when assuming ideal gas behaviour and neglecting wetting films (see main text).

The bubble does not recover its initial projected area A∗
s when approaching the channel

outlet partly because the pressure is still larger than P∗
A. However, the remaining pressure

head G∗
t l∗t is too small to account for the modest 2 % increase observed in figure 2(a).

The missing area is consistent with air diffusion across the oil–air interface during bubble
propagation. Experiments for A∗

s = 3.9 cm2, where the flow rate was interrupted when the
bubble was close to the channel outlet, showed that the projected area of the bubble at rest
after propagation was less than the initial value A∗

s by 0.35 % to 11 % for flow rates ranging
from 10 ml min−1 to 477 ml min−1. This suggests that the solubility of air in oil increases
with pressure, as previously reported by Franco-Gómez et al. (2017). Hence, in our bubble
propagation experiments, air diffusion into the silicone oil helps to retain an approximately
constant bubble area after initial compression. The maximum increase in bubble area was
7 % for the highest flow rates, which was small enough to avoid a measurable change in
bubble propagation; see also § 4.3.2 and appendix B for a discussion of the influence of
the bubble size.

In order to account for these effects, we parametrised our bubble propagation

experiments according to the inflow equivalent radius of the bubble rQ = (2
√

A∗
Q/π)/W∗

and we used the relation presented in figure 2(b) to obtain bubbles with the required value
of projected area A∗

Q. Note that compression ratios similar to figure 2(b) were found for the
initially symmetric bubbles prepared with the protocol described in § 3.
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3. Relaxation of a bubble at Q = 0: selection of the initial bubble shape

The relaxation of a centred, elongated bubble in the absence of imposed flow provides
a non-invasive method to vary the shape of a bubble while conserving its volume.
We selected specific shapes reproducibly as initial conditions for the propagation
experiments described in § 4 by controlling the time for which the bubble relaxes from
its original shape before imposing the flow.

The elongated bubble was prepared by flowing a newly formed bubble through the
centring device described in § 2.1. A flow rate of Q∗

i = 78 ml min−1 (Qi = 0.03) was
chosen so that upon exit, the bubble adopted a steadily propagating elongated shape, which
straddled the rail symmetrically about the centreline of the channel (yc = 0); see § 4.3.2
for a summary of the states of steady propagation. Once this symmetric state had been
reached a few centimetres downstream of the centring device, the flow was interrupted (at
time t∗i ) and the bubble was left to relax at Q∗ = 0. This ensured that the geometry of the
centring device did not influence the evolution of the bubble. Note that the interruption of
the flow led to an increase of the projected area of the bubble to its static value A∗

s on a
time scale much shorter than that of the bubble relaxation process.

The bubble relaxation process is shown in figure 3. We characterise the shape of the
bubble by its maximum length 2l∗ and maximum width 2d∗ aligned along x∗ and y∗,
respectively. These were measured by identifying the smallest rectangle bounding the
bubble contour; see figure 3(a). They are related through the range of shapes adopted by
the bubble during relaxation and thus, we choose to parametrise the bubble shape solely
by its non-dimensional width d = 2d∗/W∗.

Typical shape evolutions are shown in figure 3(b), where images taken at a constant
time interval are superposed for bubbles of static size rs = (2

√
A∗

s /π)/W∗ = 0.54 (left)
and rs = 1.24 (right). Starting from an elongated initial bubble shape at t∗i , the length of
the bubble decreases and its non-dimensional width d increases from an initial value di
at time t∗i to a plateau value dm, as shown in figure 3(c) for the range of bubble sizes
investigated. During relaxation, the bubble area decreased by ∼2 % because the fraction
of the bubble situated over the rail decreased. Values of di and dm are plotted against rs in
the inset of figure 3(c), which indicates that the bubble relaxes to the width of the channel
for rs > 0.87. In the bubble propagation experiments in § 4, we are limited to initial bubble
widths ranging between di and dm for a given bubble size and to the shapes explored by
the bubble during relaxation. We used the curves shown in figure 3(c) to infer the time
required to reach a desired value of d from which to initiate the propagation of the bubble.

The time evolution of dm − d is plotted on a semi-log scale in figure 3(d), revealing that
the relaxation of small bubbles (rs ≤ 0.46) is approximately exponential. Larger bubbles
(e.g. rs = 1.24) exhibit qualitatively different relaxation, which is only exponential at early
times, presumably because of the influence of the sidewalls of the channel. The exponential
part of these relaxation curves was fitted to obtain a characteristic relaxation time scale
τ ∗, which saturates to approximately 35 s for bubbles of size rs > 1. The non-dimensional
decay time τ ∗σ/(r∗

s μ) is plotted against the bubble confinement ratio r∗
s /H∗ in the inset

of figure 3(d). It follows a power law of exponent 2.7 for bubbles smaller than the width
of the channel (rs < 1), which is larger than the exponent 2.0 found by Brun, Nagel &
Gallaire (2013) for the exponential relaxation of elliptical bubbles towards a circular shape
in a liquid-filled, infinite Hele-Shaw cell of uniform depth, in the absence of external flow.
A possible explanation is that the relaxation process is accelerated by the presence of
the rail which supports pressure gradients driving the bubble into the deeper parts of the
channel.
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Figure 3. Bubble relaxation at Q∗ = 0. (a) Top-view image of a bubble of width 2d∗ and length 2l∗, symmetric
about the channel centreline, with non-dimensional static radius rs = 0.54. The grey band indicates the rail.
(b) Superposition of bubble shapes showing the relaxation of a bubble with rs = 0.54 (left) and rs = 1.24
(right). The initial slender symmetric shape corresponds to the stable symmetric propagation mode at Q∗

i =
78 ml min−1 which was reached before the flow was interrupted at t∗ = t∗i . The time steps between two
successive images are Δt∗ = 3.2 s (left) and Δt∗ = 26.7 s (right). (c) Time evolution of the non-dimensional
bubble width d = 2d∗/W∗ during relaxation from di at t∗ = t∗i to a maximum value dm for different bubble
sizes. Inset: di and dm plotted as a function of rs. Empirical fits: dm = 1.15rs if rs < 0.87 and dm = 1 if
rs > 0.87; di = 0.54 − 1.05 exp(−4.35rs). (d) Variation of dm − d as a function of t∗ − t∗i plotted on a semi-log
scale. The initial regime is fitted by an exponential from which we measure a characteristic relaxation time τ ∗.
Inset: τ ∗/(r∗

s μ/σ) against confinement ratio r∗
s /H∗ fitted with a power law of the form y = 0.63x2.7.

Due to the presence of the rail, small bubbles systematically migrated towards one of the
deeper parts of the channel and reached an asymmetric equilibrium state, consistent with
the results of Franco-Gómez et al. (2018) for r ≤ 0.87, whereas sufficiently large bubbles
(dm ∼ 1) tended to a symmetric equilibrium state. This migration was associated with a
decrease in static bubble area of up to 7 % as the fraction of bubble volume residing in the
deeper parts of the channel increased. Small bubbles always migrated to the same side of
the rail because of a small unavoidable bias in the levelling of channel. When this bias was
minimised, the migration time scale was significantly longer than the relaxation time scale
(typically one minute compared to 10 s for rs = 0.54), which ensured that the bubble had
a centroid offset of |yc| ≤ 0.005 when the flow was initiated.

4. Transient evolution of a centred bubble propagating from rest

Having established how to reproducibly prepare initially centred bubbles of different
shapes, we propagate each bubble along the channel by imposing a constant flow rate.
We investigate the evolution of these bubbles as a function of initial bubble width and
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Figure 4. Time evolution of bubbles of different initial shapes propagating from rest at a flow rate Q∗ =
186 ml min−1 (Q = 0.07) imposed at t∗ = 0. Each row of top-view images corresponds to a time sequence
with a different value of non-dimensional initial bubble width d = 2d∗/W∗ in the range 55.5 % ≤ d ≤ 63.7 %.
The grey band in each image indicates the rail. The non-dimensional time t = 2U∗

0 t∗/W∗ elapsed since flow
initiation is indicated in each snapshot, where U∗

0 = Q∗/(W∗H∗). The dimensional time t∗ is indicated in the
last snapshot of each time sequence. The inflow bubble size is rQ = 0.54 (after flow-induced compression) and
d is measured at t = 0 (just before flow initiation). The final states are either a single on-rail bubble (a–c),
which is slightly asymmetric at this value of Q, or two off-rail bubbles (d– f ). See also supplementary movie 1
available at https://doi.org/10.1017/jfm.2020.844.

flow rate. Unless otherwise specified, we focus on bubble sizes rQ = 0.54 measured during
propagation.

4.1. Influence of the initial bubble shape
Figure 4 shows the evolution of bubbles propagating from rest at a flow rate Q∗ =
186 ml min−1 (Q = 0.07), with non-dimensional time elapsed since flow initiation,
t = 2U∗

0 t∗/W∗. Each row of images corresponds to a time sequence of bubble evolution of
an initial bubble shape quantified by its non-dimensional width d measured at t = 0 (just
before flow initiation) which ranges from 55.5 % (a) to 63.7 % ( f ).

For all initial bubble shapes, the long-term outcome falls into only two categories:
(i) a single, steadily propagating bubble straddling the rail (final frames in figure 4a–c);

914 A34-10

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IN

IS
T 

CN
RS

, o
n 

21
 Ju

n 
20

21
 a

t 1
5:

29
:1

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

84
4

https://doi.org/10.1017/jfm.2020.844
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.844


Life and fate of a bubble in a perturbed Hele-Shaw channel

or (ii) two bubbles on opposite sides of the rail each moving at a constant velocity,
where the larger, leading bubble propagates faster than the smaller, trailing one so that
their relative distance increases in time (final frames in figure 4d,e). For Q = 0.07, the
single bubble straddling the rail at late times in figure 4(a–c) is slightly asymmetric about
the centreline of the channel, and this state will henceforth be referred to as ‘on-rail,
asymmetric’. The two bubbles propagating on opposite sides of the rail at late times
in figure 4(d,e) are termed ‘off-rail’ bubbles because they do not straddle the rail, only
partially overlapping it from one side.

These long-term outcomes are associated with an organised set of transient evolutions
that are determined by the initial deformation of the centred bubble into single, triple
or double-tipped bubbles as d increases (see second column of snapshots in figure 4).
Following this initial deformation, the bubble evolution may feature complex bubble
breakup and aggregation events. The wide range of transient evolutions obtained for
relatively modest changes in d (55.5 % ≤ d ≤ 63.7 %) is fully reproducible. In some
cases, the final state features compound bubbles resulting from the aggregation of two
or more bubbles (figure 4c,d) which persist until reaching the end of the channel at
Q = 0.07. However, slow drainage of the thin oil film separating the different bubbles
would eventually result in their coalescence into simple bubbles.

The simplest evolution scenarios towards single and two-bubble final states occur for
the most slender (figure 4a) and widest (figure 4 f ) initial bubble shapes, respectively. In
figure 4(a), the centred bubble deforms symmetrically about the channel centreline until
t = 3.5, after which it migrates sideways to reach the asymmetric, on-rail state at late
times (t = 7.2). When the flow is initiated, the front of the bubble located over the rail is
pulled forward. By t = 2.1, dimples on the interface (i.e. regions of negative curvature)
have formed at the edges of the rail. These dimples are subsequently advected towards the
rear part of the bubble (in the frame of reference of the moving bubble) where they vanish
shortly after t = 2.6, so that an approximately symmetric, elongated bubble with entirely
positive curvature emerges at t = 3.5.

In figure 4( f ), the bubble initially features a wide front that encroaches into the deeper
regions of the channel on either side of the rail. When flow is initiated, two fingers form
in the deeper side channels separated by a dimple of negative curvature over the rail
(t = 1.8), which is essentially the reverse of the initial deformation in figure 4(a). The
dimple deepens into a cleft (t = 2.4) which continues to grow as the fingers lengthen,
until the bubble breaks in two (t = 3.0). Because of the small, unavoidable asymmetry in
the initial bubble shape discussed in § 3 (here, centroid offset yc = −0.005 at t = 0), the
two fingers do not lengthen at precisely the same rate and thus, the newly formed bubbles
propagating on opposite sides of the rail have slightly different sizes (the projected area
of the bottom bubble is 5 % larger than that of the top one). We find that larger bubbles
always propagate faster than smaller ones within the range of flow rates and bubble sizes
investigated experimentally and we quantify this effect in § 4.3.2. In figure 4( f ), the larger
bubble has visibly moved ahead of the smaller one by t = 6.0 and the two bubbles continue
to separate, which indicates that the change in topology is permanent. Both bubbles
propagate steadily by t = 9.4, with the leading bubble propagating 2 % faster than the
trailing one.

Prior to flow initiation, the bubble is characterised by a capillary-static pressure
distribution which depends on the local in-plane curvature of the bubble and depth of the
channel through the Young–Laplace relation. If the bubble is left to relax, local pressure
gradients generate flows in the viscous fluid which act to broaden slender bubbles as shown
in § 3. However, the imposition of a flow rate driving the bubble forward tends to override
this initial capillary-static distribution. The bubble interface evolves via movement in its
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normal direction and its normal velocity is largest when the interface is orthogonal to
the direction of imposed flow along x. In addition, the presence of the rail means that
the mobility of the fluid is reduced over the rail compared with the deeper side channels.
Hence, if a portion of the bubble front encroaches into the deeper side channels, these
regions of interface can advance more rapidly than the part overlapping the rail, provided
that these portions are oriented so that their normal is sufficiently aligned with the x
direction. In order for bulges to form, these portions of interface also need to be sufficiently
wide to overcome capillary forces, as is the case in figure 4( f ). If these criteria are not
fulfilled, the portion of interface over the rail will advance most rapidly to form a central
bulge as shown in figure 4(a).

For initial bubble shapes of widths intermediate between the slender and wide bubbles
shown in figures 4(a) and 4( f ), the front of the bubble initially deforms into a shape that is
hybrid between those described above, i.e. by simultaneously developing a central bulge as
well as bulges in the deeper side channels. This intermediate initial bubble deformation is
associated with the most complex bubble evolutions, which occur within a narrow range of
initial shapes, (56.8 ± 0.1)% ≤ d ≤ (57.5 ± 0.1)%. We refer to the developing bulges as
‘side’ and ‘middle’ tips as labelled in figure 4(b) (t = 2.4). As d is increased, the growth
rate of the side tips increases relative to that of the middle tip, which is reduced (t =
2.1–2.6 in figure 4b–e). The competition between side and middle tips is a key factor in
the evolution of the bubble. In figure 4(b), the middle tip grows and the side tips retract,
so that by t = 4.0, the bubble evolves similarly to that in figure 4(a). By figure 4(c), the
rate of growth of the side tips has increased and is only marginally smaller than that of the
middle tip, resulting in a breakup into three bubbles (t = 3.2). The larger middle bubble,
which is approximately centred on the rail, pulls the smaller side bubbles in behind it
where pressure is lower (t = 3.9) to form a centred compound bubble (t = 5.1), which
finally drifts sideways to reach an asymmetric, on-rail state (t = 7.6).

The transition in long-term behaviour, from a single on-rail bubble to two off-rail
bubbles, occurs between figures 4(c) and 4(d) and coincides with the side tips overtaking
the middle tip prior to bubble breakup. In figure 4(d), this leads to a breakup into two side
bubbles propagating ahead of a smaller centred bubble (t = 3.2). This smaller bubble is
stretched across the rail as it is attracted similarly towards both side bubbles (t = 3.9), so
that in turn, it breaks into two small bubbles which are pulled in behind the side bubbles
(t = 4.8). In figure 4(e) the side tips have become dominant so that the bubble breaks
into two parts. In both cases, the remaining two-bubble evolution is similar to that in
figure 4( f ).

4.2. Influence of the flow rate
We now turn to the influence of the flow rate on bubble evolution from a prescribed initial
condition and successively examine the limits of slender and wide initial bubbles.

4.2.1. Initially slender bubbles
Figure 5 shows the evolution of initially slender bubbles (within a narrow range of widths
53 % ≤ d ≤ 55 %) as a function of flow rate, where each row of images corresponds to a
time sequence from the instant t = 0 when a fixed value of the flow rate was imposed in
the range 0.005 ≤ Q ≤ 0.18. In order to maintain the inflow bubble size at a fixed value
rQ = 0.54, the size of the bubble before flow-induced compression needs to increase with
Q; see the initial shapes at t = 0 in the column of magenta frames in figure 5 where the
bubble length increases while d remains approximately constant.
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Figure 5. Time evolution of initially slender bubbles of non-dimensional width 53 % ≤ d ≤ 55 % with rQ =
0.54, where each row of top-view images corresponds to a time sequence at a different value of the flow rate
imposed at t∗ = 0 from Q∗ = 13(Q = 0.005) to Q∗ = 477 ml min−1 (Q = 0.18). The time labelling is the
same as in figure 4. In ( f ), the transient evolution is shown on a time scale similar to previous sequences on the
first line (t ≤ 7.7) and the sequence of images on the second line shows one period of oscillation of the final,
time-periodic state (23.82 ≤ t ≤ 24.33). Between t = 7.7 and t = 23.82, the compound bubble coalesces into
a single bubble due to the drainage of the oil film separating the aggregated bubbles, which is enhanced by the
bubble oscillations.

For all values of Q, the long-term outcome is a single (simple or compound)
bubble. We observe three types of steadily propagating, invariant bubbles: strongly
asymmetric bubbles, which partially overlap the rail from one side, referred to as ‘off
rail’ (final frames in figure 5a,b), a bubble which straddles the rail symmetrically about
the channel centreline, referred to as ‘on-rail, symmetric’ (final frame in figure 5c)
and ‘on-rail, asymmetric’ bubbles (final frames in figure 5d,e). In figure 5( f ), the
bubble exhibits periodic oscillations with the green frames showing one period.
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This state is referred to as ‘on-rail, asymmetric, oscillatory’ and is related to previously
studied bubble and finger oscillations induced by channel depth perturbations (Pailha
et al. 2012; Jisiou et al. 2014; Thompson, Juel & Hazel 2014). It features the advection of
interface dimples along the side of the bubble that is furthest from the channel centreline
(top region in the final frames of figure 5 f ). These dimples are periodically generated at
the point where the front of the bubble meets the edge of the rail.

All bubbles in figure 5 initially deform symmetrically about the centreline of the
channel. This key feature of the bubble evolution will be interpreted in terms of the
unstable steadily propagating states of the one-bubble system in § 5.3.2. For the smallest
values of Q (figure 5a,b), the bubble initially broadens in response to the imposed flow
because surface tension forces are dominant and the bubble evolves as though relaxing
to static equilibrium. This results in the bubble migrating off the rail without breaking
for Q = 0.005 (figure 5a), whereas for Q = 0.01 (figure 5b), the decreasing influence
of surface tension is associated with the growth of a dimple of negative curvature on
the front part of the bubble (t = 1.8), which leads to breakup into two bubbles on opposite
sides of the rail (t = 3.1). These have different sizes because of the small, unavoidable
asymmetry in the original bubble shape (centroid offset yc = 0.002 at t = 0). The smaller
trailing bubble migrates across the rail (t = 6.4) and is pulled in behind the larger leading
bubble resulting in an off-rail compound bubble (t = 11.5). In contrast with figure 4(c,d),
we observe coalescence into a simple bubble before the bubble reaches the end of the
channel (t = 13.8) because the oil film separating the bubbles has sufficient time to
drain due to the smaller flow rate. The bubble velocity is the same before and after
coalescence.

As Q increases, the early-time broadening of the bubble promoted at low Q is
progressively replaced by the growth of a bulge over the rail. This is illustrated in
figure 5(c– f ) which shows transient bubble evolutions similar to figure 4(a) until the
bubble reaches an elongated, symmetric shape, see e.g. final frame in figure 5(c) and
yellow frames in figure 5(d– f ). We find that the next stage of evolution may involve
breakup and aggregation events following tip splitting beyond a threshold value of the
flow rate Qts = 0.085 ± 0.005. This is illustrated in figure 5(e, f ), where the bubble breaks
into two parts of very different sizes which subsequently aggregate. These events are
increasingly likely the larger the flow rate and we refer to § 4.4.2 for a discussion of this
late stage of evolution.

Note that the compression of the bubble occurs gradually over increasing time intervals
as flow rate increases, so that in figure 5( f ) (Q = 0.18) for example, an approximately
constant projected area is only reached for t > 4.0. We provide evidence in appendix B
that increasing the size of the bubble beyond rQ = 0.54 does not influence its evolution
significantly and thus, the bubble evolutions presented in figure 5 are not expected to differ
from the idealised case of a bubble of fixed volume.

4.2.2. Initially wide bubbles
Figure 6 shows the evolution of initially wide bubbles (d = 63.4 %) as a function of the
flow rate in the range 0.005 ≤ Q ≤ 0.18 with a layout similar to figure 5. For low flow rates
(figure 6a,b), the bubble evolution is similar to that of the slender bubbles in figure 5(a,b),
resulting in a steadily propagating off-rail bubble. This suggests that the bubble evolution
is insensitive to the initial shape of the bubble within this range of flow rates.

However, for higher flow rates (figure 6c,d), the long-term outcome is two steadily
propagating off-rail bubbles, where the leading bubble is faster than the trailing one so
that their relative distance increases with time. The early-time evolution is similar to that
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t = 0

t = 0

t = 0

t = 0 t = 2.7 t = 3.6 t = 4.8 t = 7.7 t = 8.9

t = 9.3 t = 9.6 t = 11.3

t = 0.8 t = 1.3

t = 1.3 t = 1.5 t = 1.9 t = 3.6 t = 9.0 t = 10.1 t = 14.0

t = 2.0 t = 2.6 t = 6.1 t = 8.7 t = 13.9 t = 14.5

t = 0.4 t = 2.3 t = 3.4 t = 5.3

t = 19.0

t = 4.2

t* = 19.5 s

t* = 35.2 s

t* = 8.4 s

t* = 1.1 s

Q = 0.005

Q = 0.01

Q = 0.03

Q = 0.18

Initial shape

Final state:

1 off-rail bubble

Final state:

2 off-rail bubbles

Aggregation

Separation

(a)

(b)

(c)

(d)

Figure 6. Time evolution of initially wide bubbles with non-dimensional width d = 63.4 % and rQ = 0.54.
Each row of top-view images corresponds to a time sequence at a different value of the flow rate imposed at
t∗ = 0 between Q∗ = 13(Q = 0.005) and Q∗ = 477 m min−1 (Q = 0.18). The time labelling is the same as in
figure 4.

of figure 6(b), in that the bubble breaks into two parts of similar but not identical sizes.
Whereas in figure 6(b), the smaller trailing bubble migrates across the rail and aggregates
with the larger leading bubble, in figure 6(c), the two bubbles remain on opposite sides of
the rail and separate, like in figure 4( f ). The transition between the time evolutions leading
to aggregation (figure 6b) and separation (figure 6c) occurs at a threshold value of the flow
rate Qc = 0.017 ± 0.001. We will show in § 5.4 how these distinct evolutions are linked to
the presence of two-bubble edge states.

In figure 6(c), the smaller bubble exhibits transient oscillations (at around t =
10.1) before reaching a state of steady propagation. As the flow rate increases, these
oscillations increase in amplitude and promote the repeated breakup of the smaller
trailing bubble, as shown in figure 6(d) where tiny bubbles created through breakup
aggregate with the bubble that spawned them. These secondary breakup events occur
for Q > 0.135 ± 0.005 and increase in complexity and unpredictability as Q increases,
leading to complex final states involving more than two bubbles for the highest flow rates
investigated.

4.3. Summary of bubble evolution
We now proceed to summarise the transient bubble evolutions reported in §§ 4.1 and 4.2
in a phase diagram and map the different long-term behaviours of single bubbles onto a
bifurcation diagram.
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4.3.1. Phase diagram of bubble evolution
The influence of the initial bubble width and the flow rate is summarised in a phase
diagram in figure 7(a), where we classify more than two hundred experimental time
evolutions into eight categories, each denoted by a different symbol. Each type of transient
evolution occurs in a simply connected region of the diagram. The diagram is reproduced
in figure 7(b) without the data points to allow space for annotations.

For Q ≤ 0.025 ± 0.005, the evolution of the bubble does not depend on initial
conditions, and three different types of evolution are observed. When Q > 0.025 ± 0.005,
the variation of the initial bubble width yields six distinct types of early-time evolution,
previously introduced in figure 4. The rich variety of transient evolutions is concentrated
over a small range of initial bubble widths for moderate flow rates above this threshold,
and the ranges of d for which these initial evolutions are observed widen as Q increases.

The long-term outcomes are indicated by the background colour: blue for single off-rail
bubbles, green for single on-rail bubbles (symmetric, asymmetric or oscillating) and red
for two off-rail bubbles (or occasionally three as will be shown in § 4.4.1). The yellow
region corresponds to bubbles which may undergo tip splitting following their early-time
symmetric evolution for Q > Qts, resulting in either a single on-rail bubble or two off-rail
bubbles; see § 4.4.2. The hatching highlights the increasing diversity of final outcomes
(with possibly more than two bubbles) as the flow rate increases; see § 4.4.2.

For all initial bubble widths investigated, the long-term behaviour of the bubble
transitions from one off-rail bubble to two off-rail bubbles at a flow rate Qc = 0.017 ±
0.001. For Q < Qc, the single off-rail bubble is reached by migrating off the rail without
breaking (•) or by breaking into two parts which subsequently aggregate (◦). By contrast,
the two bubbles separate after breakup for Qc < Q ≤ 0.25 ± 0.005 (�).

For Q > 0.025 ± 0.005, the boundary d3 separates the red region, where the long-term
outcome is always two (or three) off-rail separating bubbles, from the green and yellow
regions where a single on-rail bubble is a possible long-term outcome. In the green and
yellow regions, dash-dotted lines in figure 7(b) indicate the critical values of flow rate
at which different single on-rail bubble invariant states emerge. These are detailed in an
experimental bifurcation diagram in § 4.3.2.

The boundary d3 corresponds to the initial bubble width for which side and middle
tips of the three-tipped transient bubbles introduced in figure 4 grow at the same rate
during early-time evolution. For d1 ≤ d ≤ d3 the middle tip grows faster than the side
tips whereas the converse is true for d3 ≤ d ≤ d5. For d < d2, the bubble does not break
following initial deformation, whereas for d2 < d < d4 it breaks in three (

�
and

�
) and for

d > d4 it breaks in two. The value d1 indicates the development of side tips (the maximum
number of intersections of the bubble contour with a line perpendicular to the side walls
increases from two (�) to six (�)). Similarly, the value d5 indicates the disappearance of
the middle tip (the maximum number of intersections of the bubble contour with a line
perpendicular to the sidewalls decreases from six (�) to four (�)).

4.3.2. Single-bubble invariant modes of propagation
Figure 8 shows the single-bubble invariant modes of propagation observed experimentally
in terms of their non-dimensional centroid offset yc (a) and velocity Ub (b), both plotted
as functions of Q for three values of the bubble size rQ. These bifurcation diagrams extend
those reported by Franco-Gómez et al. (2017, 2018) for Q < 0.014 to larger values of
the flow rate up to Q = 0.19. As shown in figure 8(a), the branch of off-rail asymmetric
bubbles (AS1) extends from the capillary-static limit to the largest flow rate investigated.
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Figure 7. (a) Phase diagram of the different time evolutions of a bubble with rQ = 0.54 in terms of its initial
non-dimensional width d and the non-dimensional flow rate Q. (b) Reproduction of (a) without the data points
to allow for annotations. We distinguish eight different types of transient evolution, each denoted by a symbol
illustrated by a snapshot of the associated initial deformation on the right-hand side of the diagram in (a). The
piecewise linear solid lines labelled di (i = 1 − 5) in (b) indicate approximate boundaries between different
regions. The background colour indicates the long-term outcome of the bubble evolution as illustrated in the
legend on the right-hand side of the diagram in (b). The hatching at high flow rate highlights the increasing
diversity of final outcomes as Q increases (see figure 11). Figure 4 is representative of the bubble evolution
along a horizontal line of constant Q for Q > 0.025 ± 0.005, while figures 5 and 6 correspond to the behaviour
along vertical lines of constant d for slender (d < d3) and wide (d > d3) initial bubbles, respectively.
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Figure 8. Experimental bifurcation diagram where the non-dimensional bubble y-offset yc = y∗
c/(W

∗/2)

(a) and bubble velocity relative to the flow far from the bubble Ub = U∗
b/U∗

0 = U∗
b W∗H∗/Q∗ (b) are plotted

as functions of the non-dimensional flow rate Q for three bubble sizes rQ = 0.54, 0.8 and 1.2. The off-rail
branch AS1 and the three on-rail branches, which are symmetric (S3) asymmetric (AS1) and oscillating
asymmetrically (PO) are illustrated by the final-state snapshots of figure 5(b– f ), respectively. H1 indicates
the first appearance of on-rail bubbles, PF and H2 refer to the bifurcations between the on-rail branches. For
the periodic orbit PO, the reported values of yc and Ub are averaged over one period.

The AS1 mode of propagation was reached by initially positioning the bubble off-rail prior
to imposing the flow rate Q (following the same procedure as in § 2.2).

The other invariant modes of propagation are those classified as ‘on rail’ in figure 7. As
shown in figure 8(a), the symmetric branch S3 emerges beyond a threshold flow rate QH1.
We obtained the smallest value QH1 = 0.016 by imposing the flow while the bubble was
at rest inside the centring device depicted in figure 1(c). However, the true value could
be smaller because the long-term outcome is influenced by the expansion ratio of the
centring device which determines the bubble shape at its exit and thereby the bubble’s
dynamical evolution. The subsequent transition to an on-rail, asymmetric state (AS2)
at QPF = 0.0435, obtained from a linear fit of y2

c(Q) near the transition, is consistent
with an imperfect supercritical pitchfork bifurcation. Finally, the transition to an on-rail,
asymmetric and oscillatory state (PO) at QH2 = 0.118 is consistent with a supercritical
Hopf bifurcation; see appendix C for measurements of the amplitude and frequency of
these oscillations. The variation of these critical flow rates with bubble size was less than
3 % within the range investigated.

As shown in figure 8(b), off-rail bubbles propagate faster than on-rail bubbles at a given
flow rate due partly to lower viscous resistance in the deeper parts of the channel. Also,
bubble velocity systematically increases with bubble size over the range of bubble sizes
and flow rates investigated. This is consistent with the bubble evolutions where the larger
leading bubble propagates faster than the smaller trailing one; see e.g. figure 4( f ).

4.4. Sensitivity of the transient evolution
We now turn our attention to dynamical evolutions of the bubble that were particularly
sensitive to either the initial condition of the system or imperfections of the rail. We
distinguish situations where sensitivity occurs at moderate flow rate (Q < Qts; see figure 7)
from those where sensitivity occurs at high flow rate (Q ≥ Qts; yellow region and hatched
region in figure 7).
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Figure 9. (a,b) Time evolution of a bubble of initial width d = 57.4 % propagating from rest at a flow
rate Q∗ = 186 ml min−1 (Q = 0.07) with rQ = 0.54. (c) Superposition of (a) in blue and (b) in red. Both
experiments performed for the same experimental parameters feature breakup into three bubbles. However, the
size of the middle bubble differs visibly, which leads to different long term outcomes. The time labelling is the
same as in figure 4.

4.4.1. Moderate flow rates
We observed that the transient evolution of the bubble exhibited enhanced sensitivity to
the value of the initial offset of the bubble from the channel centreline yc, for flow rates
slightly larger than the value Qc = 0.017 ± 0.001 which marks the transition between
aggregation (figure 6b) and separation (figure 6c). We found that the final outcome of the
system is influenced by the value of the size ratio of the two bubbles formed after breakup,
which depends on yc. For example, at Q = 0.020, the two bubbles resulting from breakup
only separated when the leading bubble was at most 10 % larger than the trailing bubble
(|yc| < 0.002), while they aggregated when its size exceeded that of the trailing bubble by
20 % to 80 % (0.003 < |yc| < 0.008). For intermediate values, the smaller trailing bubble
could stretch sufficiently across the rail to break in two, leading to a final state where
three bubbles, organised in order of decreasing size and velocity, separate indefinitely. For
this reason, extra care was taken when estimating Qc to minimise the asymmetry of the
initial bubble to offsets |yc| < 0.002, which was achieved through accurate levelling of
the channel in order to minimise migration of the bubble during the relaxation process
described in § 3.

In addition, we observed reduced experimental reproducibility of evolutions where
breakup events had a propensity to generate tiny bubbles. This is illustrated in figure 9
where successive experiments, performed at the same value of d = 57.4 % for Q = 0.07,
evolve towards different final outcomes involving either two or three separating bubbles.
The difference between the time evolutions of figures 9(a) and 9(b) (superposed in
figure 9c) is caused by differences in relative bubble sizes after breakup, stemming from
small unavoidable differences in the initial bubble area of the order of 0.5 % (t = 0), which
is the limit of reproducibility in the experiments.

4.4.2. High flow rates
We mentioned in § 4.2.1 that initially slender bubbles may break up via tip splitting
for flow rates beyond the threshold value Qts = 0.085 ± 0.005, following a reproducible
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Figure 10. (a,b) Time evolution of a bubble of initial width d = 57.7 % propagating from rest at a flow
rate Q∗ = 265 ml min−1 (Q = 0.10) with rQ = 0.54. (c) Superposition of (a) in blue and (b) in red. Both
experiments performed for the same experimental parameters lead to the formation of an approximately
symmetric transient compound bubble (t = 4.5), which either undergoes off-centre (a) or centred (b) tip
splitting leading to different final outcomes. The time labelling is the same as in figure 4.

symmetric early-time evolution. This second stage of bubble evolution is not reproducible
in the experiment, as illustrated in figure 10 where two successive experiments at the same
parameters evolve towards radically different final outcomes.

The early-time symmetric evolution, which here involves breakup and aggregation,
leads to an approximately symmetric compound bubble by t = 4.5. In both figures 10(a)
and 10(b), a dimple forms at the bubble tip (t = 5.2), but at different locations (more
centrally in (b) than in (a)). This results in a second breakup which produces two bubbles
of similar sizes in figure 10(b) and very different sizes in figure 10(a) (t = 5.9). In the
latter case, the system then evolves as in figure 5(e), resulting in a steadily propagating
on-rail, asymmetric bubble (t = 9.8). However, the two bubbles in figure 10(b) ultimately
propagate on opposite sides of the rail (t = 9.8), with the larger leading bubble propagating
faster so that they separate with increasing time. This indicates that the position of the
dimple relative to the bubble tip is a key factor in predicting the long-term evolution of the
system.

The time evolution becomes increasingly complex and unpredictable as the flow
rate is increased, typically involving an increasing number of breakup and aggregation
events (hatched region in figure 7). This is illustrated in figure 11 where five successive
experiments performed at identical parameter values corresponding to the yellow hatched
region in figure 7 evolve towards five different final outcomes. At t = 0, the relative
difference in bubble area is within 0.5 % and the centroid positions along x∗ are within
1 mm of each other. The time sequences in figure 11(a,b) result in a single on-rail
bubble (t = 17.0) and in two off-rail bubbles (t = 13.0) because tip splitting occurs
off centre and on the centreline, respectively, similarly to figure 10. The flow rate is
large enough for the on-rail, asymmetric bubble obtained in figure 11(a) to oscillate.
Figures 11(d) and 11(e) provide examples of more complex time evolutions after centred
tip splitting, involving several breakup and aggregation events. In figure 11(d), an on-rail
compound bubble (asymmetric and oscillating) is recovered followed by a tiny slowly
propagating bubble, while in figure 11(e), a large off-rail bubble is followed by two much
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Early-time symmetric evolution Late-time asymmetric evolution

t = 0 t = 4.6 t = 6.7 t = 7.9t = 7.2 t = 17.0t = 3.4

t = 0 t = 4.6 t = 6.3 t = 10.1t = 7.4 t = 10.5 t = 13.0t = 3.4

t = 0 t = 4.6 t = 6.5 t = 7.2 t = 8.4

t = 9.4

t = 8.1

t = 9.9 t = 10.8

t = 15.1 t = 24.2

t = 11.7

t = 3.4

t = 0 t = 4.6 t = 6.5 t = 7.2t = 3.4

t = 0 t = 4.6 t = 6.3 t = 7.4 t = 11.3

t = 13.9t = 13.5 t = 14.2

t = 12.3 t = 13.0t = 3.4

t* = 1.7 s

t* = 1.3 s

t* = 2.4 s

t* = 1.2 s

t* = 1.4 s

(a)

(b)

(c)

(d)

(e)

Figure 11. Time evolution of a bubble of initial width d = 57.3 % propagating from rest at a flow rate Q∗ =
477 ml min−1 (Q = 0.18) with rQ = 0.54. All experiments are performed for the same experimental parameters
and lead to the formation of a transient approximately symmetric bubble (t = 4.6) which, except in (c),
undergoes tip splitting and evolves towards different final outcomes. The time labelling is the same as in
figure 4. See also supplementary movie 2.

smaller bubbles on either side of the rail, which will ultimately be sorted by size due
to their differing velocities. A recurrent event during these complex evolutions is the
rapid stretching and breakup of bubbles trailing behind a leading bubble, whose products
may in turn recombine with the bubbles ahead depending on their sizes and positions
(figure 11(d), t = 9.4 − 10.8). In contrast, in figure 11(c), tip splitting does not occur
following initial symmetric deformation and the bubble remains on rail, wobbling in a
non-periodic manner with its centroid remaining on average at yc = 0 until the end of
the channel. This scenario only occurs for Q > 0.155 ± 0.005 and becomes increasingly
likely the larger the flow rate.

The lack of reproducibility at high flow rate (figures 10 and 11) appears to stem from
the increased sensitivity to both initial conditions and perturbations in the channel such as
defects on the rail (of the order of the tape roughness). In order to test the influence of rail
defects, we varied the portion of rail travelled by the bubble by initiating their propagation
from different initial positions along the rail at high flow rate (Q > Qts) while keeping all
other experimental parameters constant. By doing so, the bubble was subjected to different
patterns of defects while propagating. We found that different initial bubble positions along
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the rail usually resulted in different locations of the dimple formed shortly after the bubble
finishes its symmetric evolution. However, the associated tip splitting always occurred
at the same time after flow initiation for a given flow rate regardless of the initial bubble
position. In contrast, when repeating experiments from the same initial position, the bubble
generally followed the same late-time evolution, with rare exceptions. This suggests that
the location of the dimple leading to tip splitting coincides with the location of the largest
rail defect ahead of the bubble once it reaches the end of its symmetric evolution. This
is reminiscent of the findings of Tabeling, Zocchi & Libchaber (1987) in a rectangular
Hele-Shaw channel (in the absence of a rail), where symmetric fingers propagating at
sufficiently large flow rates developed dimples at fixed positions in the channel due to
localised perturbations on the top and bottom glass plates.

However, in our experiments, the same initial bubble position (within <1 mm)
could also result in different dimple locations and therefore lead to different long-term
outcomes. These relatively rare cases are those previously shown in figures 10 and 11.
Ten experiments performed under the experimental conditions of figure 11 led to two
off-centred tip splittings, five centred tip splittings and three cases without tip splitting
like in figure 11(c). We suspect that tip splitting does not occur if the bubble does not
encounter a sufficiently large rail defect at the end of its symmetric evolution phase. In all
cases, the bubble fate is determined by its exact shape at that time, which exhibits small
variations between experiments stemming from small differences in initial bubble shape
at t = 0.

5. Comparison between experiment and numerical model

Interpretation of the phenomena described in § 4 based on the dynamical systems concepts
presented in the introduction requires knowledge of the underlying stable and unstable
invariant objects. In this section we present numerical results from a previously validated
depth-averaged model that can be used to identify the appropriate invariant objects of the
system.

5.1. Depth-averaged model for bubble propagation
The depth-averaged model extends McLean & Saffman’s (1981) approach to account for a
non-uniform channel height. We have previously used the same depth-averaged model to
study the propagation of a semi-infinite air finger (Thompson et al. 2014; Franco-Gómez
et al. 2016) and a single closed air bubble (Franco-Gómez et al. 2017, 2018; Keeler et al.
2019) within the constricted channel. Two extensions are required here: (i) the simulation
of multiple air bubbles; and (ii) the inclusion of topological changes in the form of
coalescence and breakup.

We work in a frame moving with the centroid position of the whole collection of bubbles
and non-dimensionalise the physical system as shown in figure 1: scaling the x∗ and y∗
directions by W∗/2, the z∗ direction by H∗ and the velocity by U∗

0 = Q∗/(W∗H∗). The
non-dimensional variable channel height is approximated by the smoothed tanh profile

b( y) = 1 − 1
2 h[tanh(s( y + w)) − tanh(s( y − w))], (5.1)

where h = h∗/H∗ and w = w∗/W∗ are the non-dimensional height and width of the rail,
respectively, and where s sets the sharpness of the sides of the rail. We use the experimental
values h = 0.024 and w = 0.25, and choose s = 40.

We describe the flow of the viscous fluid in terms of a depth-averaged velocity, assuming
Stokes flow (i.e. ρU∗

0W∗/(μα2) � 1) and a large aspect ratio (i.e. α = W∗/H∗ � 1).
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Life and fate of a bubble in a perturbed Hele-Shaw channel

Within the fluid domain, the two-dimensional depth-averaged velocity u satisfies

u = −b2( y)∇p, ∇ · (b( y)u) = 0, (5.2a,b)

where the second equation is a statement of mass conservation. At the channel sidewalls,
we enforce no-penetration conditions. The pressure is fixed to zero at the inflow, and a
non-zero constant at the outflow to ensure the dimensionless volume flux is 2.

For both kinematic and dynamic conditions at the interface of each bubble, we assume
that the air bubble fills the full height of the channel b( y). Mass conservation then leads
to the kinematic boundary condition

∂R
∂t

· n + U · n + b2( y)∇p · n = 0, (5.3)

at each bubble interface, where R is the two-dimensional position of a point on the bubble
boundary, n an outward normal unit vector and U = (Ub(t), 0) with Ub(t) the dynamically
varying frame speed. We allow for multiple incompressible bubbles, each of different
internal pressures. Hence the dynamic condition at the boundary of bubble i is

pi − p = 1
3αQ

(
1

b( y)
+ κ

α

)
, (5.4)

where pi is the internal pressure in bubble i, p the fluid pressure, κ is the lateral curvature
of the bubble in (x, y) plane and the transverse curvature contribution gives rise to the
1/b( y) term.

The pressure in each bubble, pi(t) is not known a priori, but instead is determined so
that the dimensionless volume Vi of each bubble remains constant, where Vi is calculated
assuming that the bubble occupies the full height of the channel

Vi =
∫

Γi

b( y) dx dy = −
∫

∂Γi

xb( y) dy, Ai =
∫

Γi

dx dy. (5.5a,b)

Here, Γi is the interior of bubble i and ∂Γi its bounding curve. In the model, the
dimensionless area and volume of the bubble are almost identical because we assume that
the bubble fills the available height, which differs from 1 by at most 2.6 %. As discussed
in § 2.2, the projected area of the bubble Ai varies with flow rate in the experiments, but it
remains approximately constant at a given flow rate.

We discretise the system in space using a finite-element method, implemented in the
open source oomph-lib package (Heil & Hazel 2006). The spatial discretisation uses a
piecewise quadratic, triangular mesh, fitted to the bubble boundary. Mesh deformation is
handled by treating the nodes of the mesh as embedded in a fictitious elastic solid. Time
stepping uses BDF1 or BDF2 (backwards difference formulae), with a new triangular mesh
generated at least every 5 time steps, and a typical time step is δt ≈ 0.01. The element
distribution in the new mesh is determined by using a ZZ error estimator (Zienkiewicz &
Zhu 1992) based on the continuity of pressure gradients between elements. Typically, the
minimum element area is approximately 10−7 and the maximum area is approximately
10−4. For a single-bubble simulation, the standard mesh resolution is around 4000
quadratic elements, whereas it is approximately 6000 elements in cases with two bubbles.
The channel length is typically taken as six times its width, to allow for interactions
between bubbles of moderate separation. The resulting set of discrete nonlinear algebraic
equations is solved via a Newton method and the associated linear systems of equations
are solved using SuperLU (Demmel, Gilbert & Li 1999).
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t = 1.24

t = 11.022500 t = 11.022500 t = 11.022515

t = 1.28 t = 1.28

(a) (b) (c)

(d ) (e) ( f )

Figure 12. Mesh interventions for breakup and coalescence. (a) Bubble is simply connected before
coalescence, t = 1.24. (b) Self-intersection is detected, t = 1.28. (c) Nodes in the intersected segment are
removed, with the bubble reconnected via straight lines into two closed daughter bubbles, and the bulk is
completely remeshed. (d) Two bubbles approach within the tolerance distance for coalescence, t = 11.022500.
(e) Nodes within the tolerance are removed, and the two bubbles joined via straight lines. The bulk region is
remeshed. ( f ) After several small time steps, the sharp corners from (e) have smoothed into recoiling tendrils,
t = 11.022515.

The experimental results presented in § 4 show frequent changes in bubble topology and
we must therefore allow for both coalescence and breakup in our numerical simulations. To
the best of our knowledge, there is no numerical method for solving our model equations
in which bubble breakup and coalescence do not require some intervention at the moment
of topological change. In our implementation, the intervention involves detection of a
topological event, reconnection of the lines defining the bubble interface, creating a
new bulk mesh and restarting the simulation with a new set of volume constraints. It is
important to note that the only time derivatives in our model are those associated with
motion of the interface. Hence, after a change in topology, we need only specify the new
configuration of the interface, and do not require an initial condition for the velocity of
the fluid. In our code, the intervention is completely automated and based on the criteria
described in the following paragraphs.

As the region inside the bubble is treated simply as a region of constant pressure and
fixed volume, the need for breakup is signalled by self-intersection of the bubble boundary,
which here happens in finite time (see figure 12a,b). After each timestep, we check for
self-intersection. If intersection has occurred, we remove the intersected segments of the
interface, and reconnect the two other segments with straight lines to create two simply
connected daughter bubbles (figure 12c). In contrast to breakup, coalescence does not
occur inevitably in finite time. Instead we must set some criteria that triggers coalescence,
and we choose to base this on a simple minimum distance between the interfaces of two
different bubbles. If bubbles approach below this minimum (figure 12d), we remove the
boundary nodes that are within the tolerance, and reconnect the remainder (figure 12e).
Our topological ‘surgeries’ for both coalescence and breakup produce sharp corners on
the bubble interface and are not volume conserving. To recover from the sharp corners, we
take smaller time steps after a topological change, and remesh frequently. The interface
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typically regains a smooth shape very quickly (figure 12 f ). For coalescence, we set the
target volume Vi for the new bubble to be the sum of the two parent bubbles. For bubble
breakup, we make a small adjustment to the target volumes for the two daughter bubbles
(allocated in proportion to their measured volumes) in order to fully recover the volume of
the parent bubble.

We choose a dimensionless minimum distance for coalescence of 0.01 which, although
relatively large and significantly above the distance at which van der Waals forces become
relevant, avoids the high computational cost of meshing very thin drainage regions. Indeed,
once the drainage regions become thinner than the height of the channel our model is not
expected to describe their behaviour accurately.

Comparison of bubble breakup between model and experiments in our system
indicates that breakup is reasonably well approximated by our approach. In contrast, the
approach to coalescence is different between model and experiments. As described in
§ 4, compound bubbles that can travel large distances before eventual coalescence are
observed in the experiments. There is typically very little change in the propagation
speed of the bubble and in the outline shape of the bubble front before and after
coalescence. Therefore, we believe that the final state of the system is reasonably
insensitive to details of the coalescence process, except perhaps in cases where
bubble shapes are changing rapidly. The same general phenomena are observed in the
simulations, but coalescence happens much more rapidly. We have confirmed that reducing
the minimum distance for coalescence in the model to 0.001 does not significantly
affect the behaviour and merely increases the time taken for a compound bubble to
coalesce.

In order to explore the time-dependent evolution of a single bubble, we perform
time simulations starting from a variety of initially elliptical bubble shapes. Specifically,
we define the initial bubble shape as

x = l cos(θ), y = d sin(θ), θ ∈ [0, 2π]. (5.6a,b)

We note that this initial bubble shape is symmetric about the line y = 0, but the
triangular mesh generated in the fluid bulk is not perfectly symmetric. All the initial value
calculations presented here start from a single bubble with fixed initial area A = πr2 =
πld with r = 0.54, with the bubble volume calculated from (5.5a,b). We vary the flow
rate Q and the bubble width d so that the phase diagram of the transient behaviour in the
(d, Q) plane can be compared with the experiment.

Steady solutions are calculated by setting the time derivatives to zero and again solving
the discrete nonlinear system via a Newton method, using SuperLU (Demmel et al. 1999)
to solve the linear system of equations. Once a steady solution has been obtained the effects
of the flow rate and volume can be mapped out using continuation and edge-tracking
techniques (Skufca, Yorke & Eckhardt 2006; Gelfgat 2019). We assess the linear stability
of the steady solutions by solving a discrete generalised eigenproblem using the Anasazi
eigensolver from the Trilinos project (Heroux et al. 2005). Our sign convention is chosen
so that eigenvalues with a positive real part correspond to unstable modes.

5.2. Transient evolution and phase diagram
The model described in § 5.1 captures qualitatively all the bubble evolutions observed
experimentally. A total of 273 simulations performed for Q ≤ 0.12 are organised in a
numerical phase diagram in figure 13. The phase diagram uses the same structure, symbols
and colours as the experimental phase diagram shown in figure 7.
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Figure 13. Numerical phase diagram of the different time evolutions as a function of the non-dimensional
initial bubble width d and non-dimensional flow rate Q. The initial bubble shape is an ellipse of
non-dimensional projected area πld and size r = √

ld = 0.54. The layout, symbols, colours and notations are
the same as in figure 7 including the threshold values Qc(num) and Qts(num). The symbols distinguish different
transient evolutions shown with inset images of the associated initial deformations in (b). A ninth type of initial
deformation is defined (�) which involves a tip-split finger and occurs in the upper left corner of the diagram,
for small values of d which were not probed in the experiment. The values QF(num), QH1(num), QPF(num) and
QH2(num) indicated by arrows in (b) are values calculated from a linear stability analysis indicating bifurcations
in the solution structure of the single-bubble system; see figure 15. The last three values mark transitions
between different stable one-bubble invariant solutions. Specifically, the long term outcomes observed are
off-rail bubbles for Q < QH1(num), symmetric on-rail bubbles for QH1(num) ≤ Q < QPF(num), asymmetric
on-rail bubbles for QPF(num) ≤ Q < QH2(num) and oscillatory on-rail bubbles for Q ≥ QH2(num).

The initial bubble deformations and long-term outcomes are qualitatively similar in
both experimental and numerical phase diagrams, although the threshold flow rates
do not coincide exactly. For example, the blue–red border separating one-bubble from
two-bubble long-term outcomes occurs at a threshold flow rate Qc(num) = 0.025 ± 0.005
(compared to the experimental value Qc = 0.017 ± 0.001). The single-bubble invariant
states arise in the same order as in the experiment as Q is increased: off-rail bubbles
(Q < QH1(num)); symmetric on-rail bubbles (QH1(num) ≤ Q < QPF(num)); asymmetric
on-rail bubbles (QPF(num) ≤ Q < QH2(num)); and finally oscillatory on-rail bubbles (Q ≥
QH2(num)); see § 4.3.2 for a discussion of the associated bifurcation structure.

Two examples of numerical time evolutions are shown in figure 14(a,b), which are
representative of regions in figure 13 indicated by symbols

�
and

�
, respectively. These

time sequences illustrate the key role of the relative size of side and middle tips in
determining the long-term outcome when the front of the bubble initially deforms into
three tips, consistent with experimental findings.

A distinction from the experimental phase diagram is the increased range of initial
bubble widths 0.40 ≤ d ≤ 0.80 in figure 13 compared to the experimental range in
figure 7. For d ≤ 0.48 (not accessed experimentally), numerical simulations reveal only
single-bubble long-term outcomes at moderate flow rates, as indicated by the blue-green
border in figure 13. At high flow rates within this range of initial bubble widths, we identify
a ninth type of bubble evolution where the bubble breaks in two parts of unequal sizes
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t = 0 t = 0.62 t = 0.94 t = 1.12 t = 1.46 t = 1.50 t = 1.53

t = 0 t = 0.62 t = 0.94 t = 1.12 t = 1.46 t = 1.74 t = 6.70 t = 10.4

t = 7.45

(a)

(b)

Figure 14. Numerical time evolutions of an initially centred elliptical bubble with parameters Q = 0.07 and
d = 0.60 (

�
) (a) and Q = 0.10 and d = 0.68 (

�
) (b); see figure 13. The dimensionless time is given at the

bottom of each snapshot. The bubble size is r = 0.54.

following asymmetric tip splitting (�, red region in the top left corner of the phase diagram
in figure 13).

At flow rates Q > Qts(num), where Qts(num) = 0.095 ± 0.005 is close to the value Qts =
0.085 ± 0.005 measured experimentally, the late-time evolution of the bubble typically
involves tip splitting, like in the experimental evolutions of figures 10 and 11. In this
yellow region of the phase diagram of figure 13, small differences in the details of tip
splitting between two neighbouring data points may lead to either one or two-bubble final
outcomes. More complex final outcomes occur in the hatched region as the complexity of
the bubble evolution increases with flow rate. We hypothesise that the initial asymmetric
tip splitting observed in the ninth region of bubble evolution (�) in figure 13 is analogous
to the tip splitting observed at late times in the yellow region but that it occurs sooner,
superseding the initial symmetric deformation observed in the yellow region at early times.

The increasing sensitivity of the numerical model as Q increases is reminiscent of the
sensitivity to initial conditions and rail defects reported experimentally in § 4.4.2; and
represented as a yellow and a hatched region in the phase diagram of figure 7. In the
experiments, variations occurred between repetitions at fixed parameter values due to
unavoidable differences in the initial conditions. In the numerical simulations the results
are, of course, identical for the same initial conditions, but we find that smaller differences
in initial conditions are required to provoke dynamically significant differences in the
breakup as the flow rate increases. In particular, modest changes in relative bubble volumes
after breakup can lead to quite different final outcomes, which may be a consequence of
alterations in the associated invariant solution structure.

Overall, the qualitative agreement between numerical simulations and experiments is
remarkable given the simplicity of the mathematical model and approximation of the
initial experimental conditions by ellipses.

5.3. Single-bubble invariant modes of propagation

5.3.1. Bifurcation diagram
Steady solutions of the dynamical system are summarised in the numerical bifurcation
diagram of figure 15 where the bubble centroid offset yc (a) and velocity Ub (b) are
each plotted as a function of the flow rate Q for a fixed bubble volume V = 0.542π.
Stable and unstable solution branches are plotted with solid blue lines and dotted red
lines, respectively. The stable solution branches are in agreement with the stable modes
of propagation reported in the experimental bifurcation diagram of figure 8.

The numerical simulations indicate that QH1(num) = 0.0301 marks a subcritical
Hopf bifurcation, QPF(num) = 0.0714 a supercritical pitchfork bifurcation and
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S2a

S4a

S4a
S1b

S4b

S1a

S1a

S2a

S1b

S3
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AS2 AS3

S2c

S2b

AS3

H1F
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PF

PF

H2

H2

H2

H1

(a) (b)

Figure 15. Numerical bifurcation diagram showing steadily propagating solutions for a single bubble. The
non-dimensional bubble offset yc (a) and velocity Ub (b) are plotted as a function of the non-dimensional
flow rate Q for a fixed bubble volume V = 0.542π rather than a fixed projected area. Solid blue and dashed
red lines indicate stable and unstable solutions, respectively. Each solution branch is illustrated by a snapshot
corresponding to a flow rate indicated by a black cross, except the S2b and S2c branches where snapshots
are shown in figure 18. Solid circles indicate locations of bifurcation points. More details about the solution
structure can be found in Keeler et al. (2019).

QH2(num) = 0.0789 a supercritical Hopf bifurcation, as previously reported by Keeler et al.
(2019). In the experiments, the first two bifurcations occur at values of Q lower by factors
of 1.9 and 1.6, while QH2 is larger than its numerical counterpart by a factor of 1.5.

In addition, the numerical bifurcation diagram reveals the organisation of the unstable
solution branches. We will discuss their influence on the bubble evolution in § 5.3.2, but we
note the absence of any symmetric solution for Q > 0.1345, where the unstable symmetric
branch S4 reaches a limit point.

5.3.2. Single-bubble edge states
The symmetric unstable solution branches associated with double-tipped (S1a and S1b)
and triple-tipped (S2) bubbles, calculated numerically from the theoretical model and
reported in figure 15, are strikingly reminiscent of the early-time bubble shapes transiently
observed in experiments; see figure 7. We also observe that the order in which the double
and triple-tipped shapes appear in the numerical solution space is consistent with the order
in which the corresponding shapes are observed experimentally as a function of the flow
rate, as also reported by Franco-Gómez et al. (2018). We believe that broadly equivalent
unstable steadily propagating states exist in the model and the experiment. We now show
that these unstable states have a dramatic impact on the transient dynamics of the system
as a whole, with the richness of the unstable solution structure reflected in the transient
dynamics.

In the model, the first pair of solution branches exists only for very low flow rates,
merging at a limit point at QF = 0.005085. The S1b and S1a branches have respectively
one and two unstable eigenvalues and only the shape associated with the S1a branch
features two pronounced tips. In the experiments, shapes similar to the S1b and S1a
solutions are transiently explored at Q = 0.005 in figures 5(a) (t = 2.4) and 6(a) (t = 2.3),
respectively, before the bubble eventually migrates towards a stable AS1 solution. Hence
it appears that slender bubbles are initially attracted towards an equivalent of the S1b
solution via its symmetric stable manifold and are finally repelled via its asymmetric

914 A34-28

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IN

IS
T 

CN
RS

, o
n 

21
 Ju

n 
20

21
 a

t 1
5:

29
:1

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

84
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.844


Life and fate of a bubble in a perturbed Hele-Shaw channel

2.1

1.9

1.7

1.5

1.3

1.1
5.3 5.4 5.5 5.3 5.4 5.5

2.1

1.9

1.7

1.5

1.3

1.1

1.39

1.30

1.25
5.44 5.45

1.37
5.428 5.432

t = 0.003

t = 7.7

t = 1.0

t = 12.0

t = 10.0
t = 1.0

t = 7.7

t = 7.0

t = 8.0

t = 6.0

t = 1.0

t = 0.003

AS1

AS1

S1b S1b

S1a S1a

d = 0.4 d = 0.4

d = 0.8

pb

Ub

pb

t = 1.0 t = 5.0 t = 7.7 t = 10.0 t = 10.5 t = 11.0 t = 12.0t = 0

d = 0.4

d = 0.8

t = 0.5 t = 1.0 t = 5.0 t = 6.0 t = 6.5 t = 7.0 t = 8.0t = 0
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Figure 16. Numerical time evolution of initially elliptical bubbles of width d = 0.4 (a) and d = 0.8 (b) and
size r = 0.54. The flow rate Q = 0.005 is just below the value at which the S1a and S1b branches disappear
through a limit point. The dashed bubble contours correspond to the S1b (a) and S1a (b) unstable steady states;
see figure 15. In both cases, the bubble eventually reaches the stable AS1 solution, although in (a) it converges
to the ‘upper’ asymmetric branch and in (b) to the ‘lower’ asymmetric branch. Trajectories of the system are
shown in (c) and (d) in a projection of the phase space ( pb, Ub). In (d), the dashed line reproduces the trajectory
shown in (c). Some of the times indicated in the snapshots (a) and (b) are reported on the trajectories in (c)
and (d), respectively. Coloured crosses correspond to the positions of the S1a and S1b steady states. Note that
in (c) the trajectory appears to explore AS1 twice because the phase-space projection does not capture offset
variations, but in fact the bubble only reaches AS1 at late times.

unstable manifold, while wider bubbles are attracted to the symmetric S1a solution
before being repelled asymmetrically. In this scenario, the S1a and S1b solutions are
edge states within a basin boundary that separates the two possible asymmetric solutions
corresponding to the bubble being biased towards one side or the other of the channel.

We can test this claim by studying a numerical time simulation at a low flow rate
Q = 0.005 < QF. Figure 16 shows the evolution of a single bubble from initial elliptical
shapes of width d = 0.4 (a) and 0.8 (b). The bubble contours corresponding to the S1b and
S1a unstable solutions are shown with coloured dashed lines in figures 16(a) and 16(b),
respectively. At Q = 0.005 the S1a solution has two unstable eigenvalues λ = 1.43560
and λ = 0.27542 (the time dependence is proportional to exp(λt)), whilst the S1b solution
has a single unstable eigenvalue λ = 1.09033.

In figure 16(c,d) we visualise the time evolution of the bubbles shown in figure 16(a,b)
as trajectories projected into a two-dimensional phase plane spanned by bubble pressure
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pb and bubble velocity Ub, where the steady solutions S1a and S1b are indicated with
coloured crosses. Figure 16(c) reveals that initially slender bubbles (d = 0.4) visit the
symmetric stable manifold of the least unstable (S1b) solution before leaving the vicinity
of S1b via its asymmetric unstable manifold and eventually settling on a stable asymmetric
AS1 solution (see inset in (c)). Initially wider bubbles (d = 0.8) in figure 16(d) are
instead attracted to the more unstable (S1a) solution resulting in a more visible two-tipped
deformation. After leaving the vicinity of the S1a solution, the system again settles on
an AS1 solution but in this case the bubble is nearer the ‘lower’ rather than the ‘upper’
wall. As shown in figure 16(a,b), the shape of the evolving bubble and that of the
associated unstable steady state are virtually indistinguishable at times t = 5.0 and t = 1.0,
respectively. Note, however, that the chosen phase plane projection does not capture a
complete picture because it does not, for example, convey information about the bubble
offset.

The highly deformed double-tipped shape is also transiently observed in the numerical
calculations for larger values of Q, for which the S1 branch does not exist. Figure 13 shows
that for 0.010 ≤ Q ≤ 0.025 the two-tipped shape is seen for all bubble widths and also for
Q ≥ 0.025 when the bubble is sufficiently wide. Although the S1 branch does not exist in
this range, the trajectories in phase space are expected to vary smoothly beyond the limit
point at QF. Hence it is plausible that the system will trace a trajectory through phase
space that results in two-tipped bubble shapes even if the steady solution is not present.
Figure 17 shows the trajectories of slender and wide bubbles at Q = 0.006 where the S1
branch does not exist. For both cases the trajectory initially follows a qualitatively similar
path through phase space compared to when Q = 0.005. However, the late evolution is
different in that rather than reaching the stable AS1 state, the bubble breaks up. It appears
that the unstable S1 branch plays a vital role in enabling a single bubble to approach the
AS1 state as its absence means that the bubble will break up. In other words, the edge
states on the S1 branch organise the dynamics so that breakup is avoided. Therefore the
value of QF, the highest flow rate for which the unstable branch exists, marks the threshold
between the solid and hollow circular markers in figure 13.

The same approach can be used to examine the influence of the unstable S2 solution
on the dynamics of the system. Figure 18 shows trajectories for a slender and wide
bubble when Q = 0.029. At this flow rate, in addition to the stable AS1 solution, there
are three unstable steady states on the S2 branch. The most unstable S2a solution has
four unstable eigenvalues λ = 1.29566, 2.94015 ± 1.48472i, 4.15816, the S2b solution has
three unstable eigenvalues λ = 1.44914 ± 2.51394i, 1.85719 and the S2c solution has a
complex conjugate pair of unstable eigenvalues λ = 0.19702 ± 3.54153i. For an initially
slender bubble (d = 0.4) the system evolves towards the least unstable S2c solution where
it stays in the stable manifold for a long time; see figure 18(a,c). Due to the complex
eigenvalues the trajectory oscillates in the vicinity of S2c (see the inset time evolution of
Ub in (c)) before eventually breaking up in a highly asymmetric manner that resembles
a thwarted migration towards the stable AS1 solution. In contrast the dynamics for an
initially wide bubble (d = 0.8) is significantly quicker resulting in a symmetric breakup
event. These results demonstrate not only that the unstable states are transiently observed
during time evolution, as claimed, but also that their presence influences the dynamics of
single bubbles.

5.4. Two-bubble edge states
In both the experiments and numerical simulations at relatively low flow rates, an initially
wide bubble splits in two and a critical flow rate Qc determines whether the two bubbles
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Figure 17. Numerical time evolution of initially elliptical bubbles of width d = 0.4 (a) and d = 0.8 (b) and
size r = 0.54. The flow rate Q = 0.006 is just above the value at which the limit point F occurs so that the S1
branch does not exist; see figure 15. (c,d) Trajectories are shown in a (pb,Ub) projection of the phase space with
a layout similar to that of figure 16.

coalesce or separate indefinitely; see figures 7 and 13. We now provide evidence that after
bubble breakup, unstable two-bubble steady states are so-called edge states responsible for
the organisation of these dynamical outcomes of the system.

Numerical simulations of the time evolution of an initially elliptical bubble of width
d = 0.72 at Q = 0.02 are shown in figure 19(a), demonstrating that the bubble splits into
two bubbles which later coalesce. Simulations of the evolution of the same initial bubble at
a higher flow rate, Q = 0.04, are shown in figure 19(b) and in this case the two bubbles do
not coalesce. The computed time evolutions are qualitatively similar to the experimental
evolutions shown in figures 6(b) and 6(c), respectively. Steady calculations reveal that
there is an unstable steady ‘up–down’ (UD) two-bubble solution at Q = 0.02, shown as
blue dashed lines in figure 19(a). At Q = 0.04, in addition to the UD solution there is
another ‘barrier’ (B) unstable steady solution, shown as red dashed lines in figure 19(b).

In order to demonstrate how the dynamics is related to the identified steady states of
the two-bubble system, figures 19(c) and 19(d) show the time evolutions in a projection of
the phase space of the system created by plotting the position (x1, y1) of the centroid of the
trailing bubble when two bubbles are present. Note that the projected phase space is not
the same as that in § 5.3.2. The steady two-bubble solutions are also marked on the same
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Figure 18. Numerical time evolution of initially elliptical bubbles of width d = 0.4 (a) and d = 0.8 (b) and
size r = 0.54 for Q = 0.029. The dashed contours in (a) indicate the S1c unstable steady state; see figure 15.
(c,d) Trajectories are shown in a (pb,Ub) projection of the phase space with a layout similar to that of figure 16.
Coloured crosses in (c) and (d) correspond to the positions of the S2a, S2b and S2c steady states; see figure 15.
In both cases, the bubble eventually breaks up, but the trajectories are very different. The initially slender bubble
lingers for a long time near the S2c solution, which is weakly unstable with oscillatory eigenmodes, before
eventually breaking up asymmetrically. The initially wide bubble experiences a much more straightforward
evolution towards breakup into two equal bubbles.

projection of the phase space. The two bubbles are formed at the point labelled ‘breakup’
and the subsequent evolution is shown by the solid black line. In both cases, the two
bubbles initially propagate side-by-side as the system is attracted towards the UD steady
state, which has only a single unstable eigenvalue and is therefore strongly attracting.
As seen in figures 19(a) and 19(b) the bubble shapes are virtually indistinguishable from
those of the UD steady state at t = 1.8 and t = 1.7, respectively. The system then moves
away from the unstable steady state in the direction associated with the single unstable
eigenvalue: in the projection of the phase space, the unstable steady state is analogous to
a two-dimensional saddle point.

At Q = 0.02, the lower bubble moves up and over the rail and two bubbles aggregate
and coalesce. In terms of movement through the phase space, the system is attracted
to a compound bubble that is analogous to a stable single-bubble state. Examples of
such compound bubbles are found throughout § 4. At Q = 0.04 the presence of the
second unstable steady state and its associated unstable manifold prevents the system
from reaching a coalescence point by deflecting the trajectory. Although the lower bubble
starts to move over the rail, it remains on the lower side of the rail because the B
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Figure 19. Numerical time evolutions at flow rates Q = 0.02 (a) and Q = 0.04 (b) for an initially elliptical
bubble of width d = 0.72 and size r = 0.54. The dimensionless time is given at the bottom of each snapshot.
The two-bubble coloured dashed shapes correspond to unstable steady states of the two-bubble system, labelled
‘UD’ for ‘up–down’ (blue) and ‘B’ for ‘barrier’ (red). According to our depth-averaged model, the B solution
emerges for flow rates greater than 0.029 ± 0.001. The position (x1, y1) of the centroid of the trailing bubble is
identified by a point. The associated trajectories of the two-bubble system in the (x1, y1) phase-space projection
are represented by the solid lines in (c) (Q = 0.02) and (d) (Q = 0.04). In (d), the dashed line is a reproduction
of the trajectory in (c). Times corresponding to the snapshots of (a) and (b) are reported on the trajectories (c)
and (d), respectively. Coloured crosses in (c) and (d) correspond to the values of (x1, y1) associated with the
‘UD’ and ‘B’ unstable steady states. See also supplementary movie 3.

state is sufficiently repulsive. Unable to reach the coalescence point, the two bubbles
continue to separate because they propagate at different speeds. The B steady state arises
through a saddle-node bifurcation and only exists for Q greater than a threshold flow rate
0.029 ± 0.001 which can hence be identified with the value Qc(num) roughly estimated in
figure 13.

These calculations provide compelling evidence that the unstable two-bubble steady
states are edge states whose stable and unstable manifolds partition the dynamical
outcomes of the system. The two-bubble system is more complicated than the
single-bubble case, in part because the volume ratio between the two bubbles is an
additional parameter. For example, if the bubble is not initially symmetric, then breakup
may result in two bubbles of significantly different sizes for which the impact of the edge
states described here may differ from figure 19. For all size ratios we have examined,
we find that every single-bubble steady state has an equivalent two-bubble steady state
with near identical flow rate–propagation speed characteristics and hence these solution
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branches are qualitatively unchanged. There are, however, additional two-bubble steady
states that do not have single-bubble equivalents and a thorough investigation and
discussion of two-bubble steady states is provided in the companion paper (authors’
unpublished observations).

6. Conclusion and perspectives

We have studied the dynamics of a bubble evolving from a prescribed initial condition as
it propagates through a Hele-Shaw channel driven by the steady motion of a suspending
viscous fluid. We have focused on a channel with a depth perturbation in the form of a
centred rail, because it supports multiple invariant modes of bubble propagation which lay
the foundation for complex dynamics. These invariant modes can be distinguished using
only the interfacial morphology because the nonlinearity in this system stems from the
presence of the air–oil interface. We observe a rich array of organised transient behaviour,
which may involve repeated bubble breakup and coalescence events, before a long-term
outcome is reached in the form of either a single-bubble invariant mode of propagation or
two (or more) steadily separating bubbles (sorted in order of decreasing size and velocity).
A highly unusual feature of this system is that the underlying invariant-solution structure
evolves dynamically, because changes in bubble topology causes the number of bubbles to
vary.

A depth-averaged model of bubble propagation captures the majority of the
experimental dynamics and features similar single-bubble, stable invariant states as
observed in the experiment. We therefore conjecture that broadly similar unstable invariant
states occur in the experiment as in the model and we find that the bubble transiently adopts
the shape of unstable solutions during its evolution. Moreover, we show that multiple
unstable steady states play a key role in organising the transient dynamics by partitioning
the dynamical outcomes of the bubble evolution via their stable and unstable manifolds.
The multiplicity of these steady states in turn underpins the subtle dependence of the
dynamics on the width of the initial bubble. Initial conditions determine the specific paths
of exploration between these states and thereby the time scales of transient evolution which
can vary significantly.

We identify the specific two-bubble invariant state that controls the fate of the bubble
once it has broken up: in its absence the smaller trailing bubble migrates across the rail
to coalesce with the leading bubble, while in its presence the products of the breakup
remain on opposite sides of the rail and separate indefinitely. The complexity of the
two-bubble system is such that we defer its detailed analysis to a forthcoming paper
(authors’ unpublished observations). A particularly striking feature to be discussed is that
all single-bubble invariant states have equivalents in the two-bubble system. However,
additional multiple-bubble states mean that the complexity of the dynamics increases with
the number of bubbles.

For moderate flow rates, the evolution of the bubble is fully reproducible in the
experiment. However, as the flow rate increases, the experiments exhibit enhanced
sensitivity to both initial bubble condition and unavoidable rail perturbations. Hence,
multiple repetitions of the same experiment can lead to very different long-term outcomes,
e.g. multiple separating bubbles versus a single-bubble invariant mode of propagation.
For the highest flow rates investigated the Reynolds number approaches Re � 0.3, so that
inertial perturbations could contribute to this sensitivity. However, an analogous sensitivity
is also found in numerical time simulations at Re = 0 for comparably high values of
the flow rate. This sensitivity makes the long-term behaviour of the system practically
unpredictable.
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In both the experiments and simulations, the evolution of the bubble at high flow rate
follows a complex scenario of transient emulsification and coarsening through repeated
cycles of breakup and coalescence. The sensitivity arises from differences in the breakup
of the bubble, rather than direct sensitivity to initial conditions per se, and slight
differences in the relative volumes of the daughter bubbles that are created can lead
to a very different subsequent dynamics. We conjecture that the increased complexity
of the dynamics is associated with a growing number of invariant states: the number
increases with increases in the flow rate and also with increases in the number of bubbles.
An increase in flow rate also promotes breakup into an increasing number of bubbles
with a broad size distribution which means that the number of potential invariant states
can increase very rapidly. The large number of invariant states may entangle into a
complex edge that need not persist for all time, but underlies long transients of the
disordered dynamics for sufficiently large flow rates. Whether the system can eventually
exhibit self-sustaining disordered dynamics, equivalent to a fully developed turbulent state,
remains an open question.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.844.
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Appendix A. Wetting films

In order to estimate the thickness of the wetting films, we performed experiments using
dyed silicone oil (APD fluorescent leak detection dye). The rail was removed for simplicity
so that the bubble propagated steadily and symmetrically about the channel centreline. The
total oil thickness 2h∗

f was estimated by measuring the intensity of the light transmitted
through the channel from the LED light box to the top-view camera moving with the
propagating bubble. Calibration of the light intensity was performed by measuring values
for air and oil-filled channels, respectively. We also checked that the light intensity was
proportional to the thickness of the attenuating medium by performing measurements
through an oil-filled channel containing a transparent plastic wedge of fixed angle. In the
following, we assume that the top and bottom oil films have the same thickness h∗

f .
A typical distribution of wetting film thickness over the projected area of the bubble is

presented in figure 20(a) for a bubble propagating at a flow rate Q∗ = 100 ml min−1. The
bubble size during propagation is rQ = 0.59. The film thickness distribution is symmetric
about the channel centreline and uniform along x∗ for fixed values of y∗. Wetting films
are thickest on the centreline (y∗ = 0) and thin as |y∗| increases towards the edge of the
bubble, which is consistent with the findings of Tabeling et al. (1987).

We found that the film thickness 〈h∗
f 〉 averaged over the projected area of the bubble

does not depend significantly on the bubble size. The variation of 〈h∗
f 〉 with the capillary

number is shown in figure 20(b). Two expressions have previously been used to capture
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Figure 20. (a) Spatial distribution of the wetting film thickness h∗
f relative to the channel depth H∗ for a bubble

of size rQ = 0.59 propagating steadily and symmetrically about the channel centreline in the absence of a rail
at a flow rate Q∗ = 100 ml min−1 (Q = 0.038, Ca = 0.088). The profiles along x∗ and y∗ are obtained by
averaging over the horizontal and vertical bands indicated with red lines, which are centred on the centroid
of the bubble (x∗

c ,y∗
c ). (b) Relative film thickness 〈h∗

f 〉/H∗ averaged over the bubble area as a function of the
capillary number Ca. Two functions of Ca are fitted to the data: 〈h∗

f 〉/H∗ = h∞(1 − exp (−βCa2/3)) (Tabeling
et al. 1987), where the values of the fitting parameters are h∞ = 0.21, β = 5.6 and 〈h∗

f 〉/H∗ = h∞Ca2/3/(c1 +
Ca2/3) (Aussillous & Quéré 2000), where h∞ = 0.31 and c1 = 0.24. Inset: schematic view of the bubble tip in
the (x∗, z∗) plane.

this variation, both exhibiting the Ca2/3 behaviour predicted by Bretherton (1961) and
Park & Homsy (1984) in the limit of vanishing Ca. Tabeling et al. (1987) captured the
film thickness of a semi-infinite bubble (finger) propagating in a rectangular Hele-Shaw
channel with an empirical relation, 〈h∗

f 〉/H∗ = h∞(1 − exp (−βCa2/3)), where the film
thickness at large Ca, h∞, and β are fitting parameters. The scaling law 〈h∗

f 〉/H∗ =
h∞Ca2/3/(c1 + Ca2/3), where h∞ and c1 are fitting parameters, was proposed by
Aussillous & Quéré (2000) to characterise the thickness of the liquid film left behind
an advancing finger in a capillary tube. Two-parameter fits of both expressions capture our
experimental measurements, as shown in figure 20(b).

Appendix B. Influence of the bubble size

We investigated the influence of bubble size on the early-time symmetric evolution of
the bubble. At Q = 0.07, we observed early-time evolutions similar to that of figure 4
(rQ = 0.54) when varying the bubble width d. The values of di (i = 1, . . . 5) marking the
boundaries between different transient evolutions (for Q > 0.025) are plotted in figure 21
for different bubble sizes rQ, revealing that they do not vary significantly for bubbles with
rQ ≥ 0.54. This confirms that the initial width of the bubble d influences the evolution
of the bubble much more strongly than its initial length l. It also suggests that the time
sequences of figures 5 and 6, where the time required to compress the bubble following
the imposition of the flow increased with Q, exhibit behaviour representative of the system
that is unlikely to differ from that of a bubble of fixed volume.

We also investigated the effect of flow rate for rQ = 0.8 and rQ = 1.2. At low flow
rates (Q < Qc, see figure 7), time evolutions are similar to that of bubbles with rQ = 0.54.
For Q > Qc, the main differences with bubbles of size rQ = 0.54 are for time evolutions
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Figure 21. Values of di (i = 1, . . . 5) at Q = 0.07 (see figure 7) for bubbles of different inflow sizes rQ = 0.4,
0.54, 0.8 and 1.2. For rQ = 0.4, d4 and d5 could not be measured because they exceed the largest width dm ≈
0.45 explored by the bubble during relaxation (see inset of figure 3c).

leading to breakup into two bubbles of comparable sizes. For Q ≥ 0.025, this happens for
d > d3 or for d < d3 and Q > Qts in the case of centred tip splitting (see figure 7). While
at rQ = 0.54 the two bubbles remained on opposite sides of the rail (see figures 4(d– f )
and 10(b)), the smaller trailing bubble often broke into two parts after elongation across
the rail at rQ = 0.8, leading to a state with potentially three separating bubbles. In contrast,
at rQ = 1.2, the smaller trailing bubble crossed the rail, leading to a single off-rail bubble.
This is presumably due to the faster retraction of the rear part of the leading bubble when
its size increases, which results in lower pressures at its rear, thus intensifying its attraction
of the trailing bubble.

Experiments with air fingers (semi-infinite bubbles) yield similar modes of propagation
to those shown in figure 8 and the same initial deformation of the finger tip as in figure 7.
When initial deformation leads to two or three tips along the finger front, only the fastest
ultimately propagates while the other(s) stop growing and retract slowly. This simplifies
the evolution because breakup and aggregation events do not usually occur.

Appendix C. Onset of oscillations

Oscillatory phenomena for fingers in variable-depth Hele-Shaw cells has been explored
in our previous work (Pailha et al. 2012; Jisiou et al. 2014; Thompson et al. 2014). In all
cases, these oscillations are associated with channel depth perturbation and, in particular,
the pressure variations induced by changes in transverse curvature of the interface when
it is confined in regions of differing depths. For fingers, these oscillations appear where
the interface for a steady states lies along the edge of the obstacle. The amplitude and
wavelength is determined by how the interface spreads, and for bubbles is further modified
by the constrained overall volume.

Figure 22(a) shows a snapshot of an oscillating asymmetric bubble of size rQ = 1.2
propagating at flow rate Q = 0.17 (PO branch in figure 8). The dimples periodically
generated at the bubble tip (where the bubble front meets the edge of the rail) remain
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Figure 22. (a) Snapshot of an oscillating asymmetric bubble of inflow size rQ = 1.2 propagating at flow rate
Q = 0.17 (PO branch in figure 8). (b) Non-dimensional amplitude of oscillation 2A∗

H2/W∗ and (c) frequency
f ∗
H2 of oscillation against non-dimensional flow rate Q for bubbles of inflow size rQ = 0.54, 0.8 and 1.2.

A square-root fit is shown for the two largest bubbles in (a). The inset of figure (c) shows the non-dimensional
frequency 2π f ∗

H2((W
∗/2)/U∗

0 ). See also supplementary movie 4.

at fixed positions x∗ in the laboratory frame of reference. Each generated dimple
progressively flattens under the effect of capillary pressure gradients and, consequently,
the bubble is slightly flatter at the rear than at the front. We define the oscillation
amplitude A∗

H2 as the maximum peak-to-peak amplitude of the interface perturbation; see
figure 22(a).

The plateau value of the oscillation amplitude 2A∗
H2/W∗ (reached following transient

increase) is plotted in figure 22(b) as a function of the non-dimensional flow rate Q for
three bubble sizes. The small amplitude values measured at low flow rates indicate the
increasing excitability of the system near the transition which leads to damped oscillations
of the bubble. The amplitude growth at higher flow rate is accurately captured by a
square-root dependence on Q for the two highest bubble sizes, which yields a critical
flow rate QH2 = 0.118.

The experimental oscillation frequency f ∗
H2 reported in figure 22(b) increases linearly

with flow rate and only slightly with bubble size. The associated non-dimensional
pulsation 2π f ∗

H2((W
∗/2)/U∗

0) presented in the inset of figure 22(b) takes an approximate
average value of 12.1. Our experimental resolution is not high enough to capture the
expected pulsation increase near the bifurcation, which was calculated by Keeler et al.
(2019).
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propagation in a radial Hele-Shaw channel with time-varying cell depth. Phys. Rev. Fluid 4, 064002.

ZIENKIEWICZ, O.C. & ZHU, J.Z. 1992 The superconvergent patch recovery and a posteriori error estimates.
Part 1: the recovery technique. Intl J. Numer. Meth. Engng 33 (7), 1331–1364.

914 A34-40

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IN

IS
T 

CN
RS

, o
n 

21
 Ju

n 
20

21
 a

t 1
5:

29
:1

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

84
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.844

	1 Introduction
	2 Experimental methods
	2.1 Experimental set-up
	2.2 Effect of flow on the projected area of the bubble

	3 Relaxation of a bubble at Q=0: selection of the initial bubble shape
	4 Transient evolution of a centred bubble propagating from rest
	4.1 Influence of the initial bubble shape
	4.2 Influence of the flow rate
	4.2.1 Initially slender bubbles
	4.2.2 Initially wide bubbles

	4.3 Summary of bubble evolution
	4.3.1 Phase diagram of bubble evolution
	4.3.2 Single-bubble invariant modes of propagation

	4.4 Sensitivity of the transient evolution
	4.4.1 Moderate flow rates
	4.4.2 High flow rates


	5 Comparison between experiment and numerical model
	5.1 Depth-averaged model for bubble propagation
	5.2 Transient evolution and phase diagram
	5.3 Single-bubble invariant modes of propagation
	5.3.1 Bifurcation diagram
	5.3.2 Single-bubble edge states

	5.4 Two-bubble edge states

	6 Conclusion and perspectives
	A Appendix A. Wetting films
	B Appendix B. Influence of the bubble size
	C Appendix C. Onset of oscillations
	References

